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ABSTRACT 

Wastewater treatment plants (WWTP) involve several complex physical, 

biological and chemical processes. Often these processes exhibit non-linear behavior that 

is difficult to describe by classical mathematical models. Safer operation and control of a 

WWTP can be achieved by developing a modeling tool for predicting the plant 

performance.  

In the last decade, many studies were realized in wastewater treatment based on 

intelligent methods which are related to modeling WWTP. These studies are about 

predictions of WWTP parameters, process control of WWTP, estimating WWTP output 

parameters characteristics. In many studies, neural network models were used to model 

chemical and physical attributes in the flow rate. 

In this Thesis, a data-driven approach for analyzing water quality is introduced. 

Improvements in the data collection of information system allow collection of large 

volumes of data. Although improvements in data collection systems have given 

researchers sufficient information about various systems, they must be used in 

conjunction with novel data-mining algorithms to build models and recognize patterns in 

large data sets.  Since the mid 1990’s, data mining has been successfully used for model 

extraction and describing various phenomena of interest.  
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CHAPTER 1.   INTRODUCTION 

The availability of quality water is a concern, and human-environment 

interactions still leave much to be understood. Knowledge about water transport, quality, 

and quantity awaits further discovery. Water quality has high variance from location to 

location and time to time, due to its sensitivity to both chemistry (i.e. nutrient loading), 

and transport (i.e. stream flow). Both human activity such as the application of fertilizers 

and land management practices, and meteorology play a strong role in water quality.  

Accurate water quality prediction would provide us with a better understanding of 

the human influence on aquatic life and provide knowledge for intelligent decision 

making in regards to ecological conservation. 

The main advantage of applying data driven techniques is that they can eliminate 

some of sources of errors (human sources’ errors or machines’ errors) because they do 

not require a strong physical understanding of the system to be modeled. Data is used 

directly for model building, not for validation of a theoretical physical concept. 

Chapter 2 presents the application of data mining techniques for predicting 

rainfall around the Wastewater Reclamation Authority (WRA). Both radar and rain gauge 

data are used in constructing prediction models. Model accuracy is estimated using the 

data from the rain gauges. The models are generated by five data-mining algorithms with 

the decision tree algorithm produced the highest accuracy predictions. 

Chapter 3 presents the application of data-mining techniques for the prediction of 

total influent of a wastewater treatment plant. Early prediction of total influent will 

ensure planned and smooth operation of the plant. The author explores radar data 

(reflectivity at four different heights, rain gauge data and offers influent prediction at 

three different time stamps in the future. Maximum prediction length being 180 minutes. 

Six data mining algorithms namely Naïve Bayes, k-nearest neighbor, support vector 
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machine, logistic regression, neural networks, and decision tree algorithms are employed 

to build prediction models. Models built using decision tree algorithms yielded the better 

prediction results. In addition, sensitivity analysis of the proposed model is done by 

varying the bin size of total influent. Then regression analysis was done with a NN model 

and maximum prediction length as 3 hours. 

In chapter 4 a neural network model for performance optimization of a 

wastewater treatment plant is presented. The model allows for minimization of operation 

costs and assessment of the environmental balance (i.e. balanced chemicals’ removal in 

flow rate of a wastewater plant). Neural networks provide effective predictive models for 

complex processes that are poorly described by the first principle models. The 

wastewater biological phenomena in wastewater treatment plants fall in such category. 

The neural network model is developed using the data from the Wastewater Reclamation 

Authority (WRA) located in Des Moines, Iowa. The model predicts the carbonaceous 

biological oxygen demand (CBOD) and the total suspended solids (TSS) in the effluent 

stream. 

1.1 Radar-based modeling approaches in water quality 

With the recent deployment of in situ instrumentation in rivers, streams, and 

creeks nationwide, as well as real-time data reporting via satellite communication 

technology, a wealth of data is available that had never before in the past. Data mining 

can utilize this vast base of data for pattern recognition and machine learning, so as to 

make accurate predictions. 

1.2 Data-driven modeling approaches in water quality 

Data mining makes models from the “ground up” rather than using the traditional 

top-down approach of its physics-based counterpart. As data-driven models are derived 

directly from the data, their accuracy is unparalleled by physics-based models. 

In order to achieve high accuracy water quantity estimation, high spatiotemporal 

resolution precipitation data is highly desirable. There have been a few efforts to utilize 
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data-driven modeling for precipitation estimation via NEXRAD radar data. There have 

been fewer attempts to make this link between radar data and tipping bucket data with 

data-driven techniques. Feed forward neural network (FFNN) have applied for rainfall 

estimation using radar reflectivity and rain gauge data [1,2]. Trafalis et al. considered 

some different parameters, such as wind speed and bandwidth to complement reflectivity, 

but with unimproved results. The best performing models in the study all had MSE’s less 

than 0.1mm/hr [3]. In this study, chapter 2, different parameters such as velocity and 

spectrum width are considered besides reflectivity to make a rainfall predictive 

classification model but with unimproved results again. 

1.3 The multilayer perceptron (MLP) 

As the algorithm used throughout this Thesis is the multilayer perceptron (MLP), 

otherwise known as neural network (NN) or artificial neural network (ANN), an in depth 

algorithm description is justified.  It has found widespread success in many areas other 

than hydrology due to its ability to model noisy data and usefulness for both classification 

and regression.  This section should provide insight to one of the machine learning 

algorithms that has been so widely labeled a “black box” model. 

1.3.1 MLP overview 

The MLPs applied in this research are feed forward backwardly propagating 

neural networks.  The MLP’s structure consists of nodes in an input layer, a hidden 

layer(s), and an output layer.  The concept was biologically inspired to represent the 

human brain’s ability to process in parallel, to learn from experience, and to be highly 

connective and modifiable.  The brain also operates via supervised learning, or the ability 

to train itself and learn from past experiences.  The brain has the ability both to feed 

connections forward, near sensory input, and feed connections backwards near sensory 

input.  These connections are mimicked by the NN with the use of loops.  Feed forward 

NNs do not have loops, while in a looping, or recurrent NN, information is fed back from 
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an output node to an input node 

parameter is assigned a node in its respective input/output

1.3.2 The MLP structure and algorithm

Figure 1.1 is a diagram of a single perceptron with 

binary output.  The inputs are multiplied by their respective weights and the products are 

summed at the junction.  If the sum at the junction is greater than the threshold (

perceptron “fires.”  In the binary example, firin

describes the summation that occurs at the node.  
 

 

 

Where yj is the output of the 

the input value, w is the input weight, and 

After each element in the data set, the weights for the inputs are updated, based on 

error.  If the target value was achieved, the weights remain unchanged.  Equation (

describes how the neural network updates the 

 

 

an output node to an input node [4-5]. In both categories of NNs, each input/output 

parameter is assigned a node in its respective input/output layer. 

The MLP structure and algorithm 

Figure 1.1 is a diagram of a single perceptron with two inputs

binary output.  The inputs are multiplied by their respective weights and the products are 

summed at the junction.  If the sum at the junction is greater than the threshold (

perceptron “fires.”  In the binary example, firing means outputting a “1.”  Equation (1.1) 

describes the summation that occurs at the node.   

 

Figure 1.1 Perceptron 

 (1.1) 

is the output of the j th node, m is the number of inputs to the 

is the input weight, and b is a bias factor. 

After each element in the data set, the weights for the inputs are updated, based on 

error.  If the target value was achieved, the weights remain unchanged.  Equation (

he neural network updates the j th weight in the i th layer. 

 (1.2) 

4 

. In both categories of NNs, each input/output 

two inputs, and a simple 

binary output.  The inputs are multiplied by their respective weights and the products are 

summed at the junction.  If the sum at the junction is greater than the threshold (Θ), the 

g means outputting a “1.”  Equation (1.1) 

is the number of inputs to the j th node, x is 

After each element in the data set, the weights for the inputs are updated, based on 

error.  If the target value was achieved, the weights remain unchanged.  Equation (1.2) 



www.manaraa.com

 

 

Where  is the learning 

activation function. 

It is this recalculating of the weights that allows the 

dataset. Stopping criteria is user defined, usually by limiting the number of epochs, or 

cycles through the data set, the model continues.

by Rosenblatt (1958) in at the Cornell Aeronautical

made that the single layer perceptron was only capable of learning when the data set was 

linearly separable, such as modeling the XOR gate

development, multiple perceptrons were

stepwise activation function was replaced with a continuous and differentiable sigmoidal 

one, so that its outputs could be continuous.

when put into layers, can be seen below in

with two hidden layers and 15 nodes.

function for continuous MLPs, in this case the logistic function, is show in equation 

 

 

is the learning rate,  is the error attributed to the node and 

It is this recalculating of the weights that allows the neural network to “learn” a 

Stopping criteria is user defined, usually by limiting the number of epochs, or 

data set, the model continues. The original perceptron was developed 

by Rosenblatt (1958) in at the Cornell Aeronautical Laboratory, but the observation was 

made that the single layer perceptron was only capable of learning when the data set was 

, such as modeling the XOR gate [6]. However, after further 

lopment, multiple perceptrons were placed in layers (see figure 1.2), and the simple 

stepwise activation function was replaced with a continuous and differentiable sigmoidal 

ts outputs could be continuous. The resulting structure of the perceptron 

when put into layers, can be seen below in the Figure (1.2) which is an MLP schematic 

two hidden layers and 15 nodes. An example of the new sigmoidal activation 

function for continuous MLPs, in this case the logistic function, is show in equation 

 (1.3) 

 

Figure 1.2 Multilayer perceptron 

5 

is the error attributed to the node and f is the 

l network to “learn” a 

Stopping criteria is user defined, usually by limiting the number of epochs, or 

The original perceptron was developed 

but the observation was 

made that the single layer perceptron was only capable of learning when the data set was 

However, after further 

ers (see figure 1.2), and the simple 

stepwise activation function was replaced with a continuous and differentiable sigmoidal 

The resulting structure of the perceptron 

which is an MLP schematic 

An example of the new sigmoidal activation 

function for continuous MLPs, in this case the logistic function, is show in equation 1.3. 
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The optimal structure of a NN still remains a trial-and-error process, but there are 

several rules of thumb that previous researchers have found useful.  For example, 

Tarassenko (1998) states that the number of samples in the training set should be greater 

than the number of synaptic weights in the network, and according to Hecht-Nielsen 

(1987) the number of hidden nodes, M, in a single hidden layer model NN is between I 

and 2I +1, where I is the number of input nodes [7-8]. Data-mining software, such as 

Statistica or WEKA can be a useful tool for testing multiple NN structures to find optimal 

results [9]. 

1.4 Decision tree 

Another algorithm used throughout this Thesis is Decision trees. Decision tree is 

about classification. A decision tree partitions its input space to branches, that will be 

partitioned repetitively based on the other attributes in the model.  

Any node t is splitting based on a criteria called Entropy (t) shown in equation 

(1.4), where Pi is the probability of class i within node t. Attribute and split selection is to 

minimize entropy. After node splitting, two or more descendants are produced. Entropy is 

measured for each child and the sum of it is weighted by its percentage of the parent’s 

cases in computing the final weighted entropy used to decide the best split [10]. 

���������	 
 ∑ �P� � log ������ (1.4) 

Given a node t, the splitting criterion used is the Gain Ratio in equation (1.5). 

��������� 
 ������	 ⁄ ���������� �������	 (1.5) 

This ratio expresses the proportion of information generated by a split that is 

helpful for developing the classification, and may be thought of as a normalized 

information gain or entropy measure for the test. A test is selected that maximizes this 

ratio, as long as the numerator (the information gain) is larger than the average gain 
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across all tests. The numerator in this ratio is the standard information entropy difference 

achieved at node t, expressed as in equation (1.6) and the element in equation (1.7) and 

(1.8) 

������	 
 �����"	 � ����#�"	(1.6) 

, where  

�����"	 
 � ∑ $� $%&'��� (1.7) 

����#�"	 
 ∑ "� "&()�� � �����"�	(1.8) 
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CHAPTER 2.   PRECIPITATION ESTIMATION WITH DATA DRIVEN 
MODELING 

2.1 Introduction 

The connection between radar data and tipping bucket precipitation has been a 

topic of interest in the hydrological and meteorological community for a decade and is 

motivated by the necessity for higher resolution precipitation for hydrological model 

input. In this Thesis, a series of algorithms are trained with next generation radar 

(NEXRAD) and rain gauge data for precipitation estimation at West Des Moines, IA. The 

resulting DTs have overall accuracy 95.9 %. The vision of the author is to develop this 

model, which links rain gauge and radar data, to find the radius of accuracy of the model 

at various locations of rain gauges that benefit from the accuracy of physical tipping 

bucket rain gauges, and the spatiotemporal resolution of NEXRAD system technology. 

The system of rainfall predictors at various tipping buckets has been developed to serve 

as input to the Wastewater Reclamation Authority (WRA). 

The high spatiotemporal resolution of next generation radar (NEXRAD) makes it 

a useful instrument for precipitation estimation. NEXRAD-II data are the three 

meteorological base data quantities: reflectivity, mean radial velocity and spectrum 

width. NEXRAD-III data are derived from various algorithms for processing NEXRAD-

II data to produce numerous meteorological analysis products, such as storm velocity, 

one hour precipitation total, storm total precipitation, digital mesocyclone detection, 

digital precipitation array, wind profiles, and vertical integrated liquid content [11]. 

Radar data has sources of error which could be mitigated by the aid of a 

secondary system, such as a rain gauge. Blockage by mountains and hilly terrain, 

confusion with flocks of birds and swarms of insects, and signal attenuation are all 

problematic to radar observations. Rain gauges measure rather than estimate precipitation 

and are thus deemed as the most truthful account of rainfall available. However, rain 

gauges provide mere point measurements, and their values may be different from those at 
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another gauge only a few kilometers away. It is common, especially during the 

convective season when the atmosphere is often unstable, for very high precipitation rates 

to be measured at one location, and none at another. Should the two technologies be 

melded together, that is NEXRAD and tipping bucket rain gauge, the strengths of both 

systems could be utilized. 

The aim of this chapter is to use NEXRAD-II reflectivity, velocity, spectrum 

width data from a weather station in Des Moines, IA and network of seven rain gauges at 

the Wastewater Reclamation Authority (WRA) plant located in Des Moines, Iowa by a 

flow monitoring program to train 5 algorithms namely decision Trees (DT), K Nearest 

Neighbors (K-NN), Naïve Bayes (NB), Multilayer Perceptrons (MLP) and Linear 

Regression (LR) for precipitation estimation at a rain gauge in Des Moines, IA. The 

resulting model is verification that rainfall in those locations follows reflectivity so these 

inputs can be used then for the flow rate prediction model in the next chapter. The 

National Oceanic and Atmospheric Association’s (NOAA) uses an algorithm for 

converting reflectivity data to hourly precipitation, a NEXRAD-III product. This model 

could then be used to provide the WRA plant with rainfall data of a 5 minutely 

observation frequency and a spatial resolution of 1 km2. Currently, the WRA uses seven 

tipping buckets within the ~250 km2 basin that report rain rates at 15 minute intervals. 

There are different approaches to forecast prediction, for example, the algorithms 

for rainfall estimation were classified into physics-based and statistical/engineering 

approaches by Chandrasekar [12-13]; radar-derived rainfall products like measurements 

in reflectivity factor in real-time are  used to predict the precipitation; it is transformed 

into rainfall accumulations and incorporates rain gauge data to improve the radar 

estimates.  

In the early 1980s at the Hydrologic Research Laboratory by executing series of 

procedures precipitation algorithm was built to estimate rainfall and over time it was 

developed, and tested [14]. The lowest four elevation angles, 0.58, 1.58, 2.48, and 3.48 
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for reflectivity are used by the algorithm. Radar estimation has some sources of error 

which are often hard to quantify [14], while some studies focused on reduction of these 

errors. 

Satellite precipitation algorithm is another approach to generate high spatial and 

temporal resolutions rainfall estimates by combining the data from Tropical Rainfall 

Measuring Mission (TRMM) Precipitation Radar (PR) and multispectral Geostationary 

Operational Environmental Stellite (GOES) imagery. They could predict 30 minutes 

rainfall estimate by matching PR measurements with four-band GOES image data to to 

make a data set and train it in neural network [15]. Other data mining techniques like 

Hybrid or joint PCA are applied in precipitation estimate approaches [3]. 

In most of these approaches, reflectivity is used to make an NN model for the 

prediction, while the WSR-88D records digital database contains three native variables: 

velocity, reflectivity, and spectrum width. These additional radar variables at multiple 

elevation angles and multiple bins in the horizontal can be used for precipitation 

prediction. Linear regression models besides feed forward NNs are used for precipitation 

prediction. New models which contained other radar products were not significantly more 

accurate than reflectivity alone.  

The most commonly used technique of radar-based rainfall estimation is a 

function between reflectivity (Z) and rain intensity (R) which shows the capability of 

weather radars to measure rainfall rate using that relationship between radar echo power 

and rain intensity. A volume is sampled and drop size distribution is identified then Z and 

R are different moments of that distribution  [16]. The most common form of Z and R can 

be related as follows in equation (2.1) where a and b are empirically estimated [17]. 

Following the data mining approach in weather data forecasting, different 

algorithms are built and compared the accuracy and chose the outperforming one to be 

able to forecast length of short term prediction for precipitation [18]. To do the 

classification, output has been discretized then encountered class imbalance so synthetic 
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over sampling techniques has been used. Synthetic Minority Over-sampling Technique 

(SMOTE) is an over sampling method; it interpolates between some minority-class 

examples to form new minority class examples that lie together. Thus it is avoided to 

over-fit and the decision boundaries spread farther for the minority class in to the space 

of majority class [19]. 

2.2 Radar precipitation estimation (Z-R conversion) 

The most common conversion (Z-R) of reflectivity to precipitation rate takes the 

following relationship:      

 * 
 � · �, (2.1) 

Where Z is the reflectivity, R is the precipitation rate, and a and b are constants 

from empirical studies (calibration). Typically, the values used for a and b are 200 and 

1.6 respectively.  

2.3 Data Acquisition  

Two types of data were collected for the building of algorithms in this study, (1) 

radar reflectivity data and (2) tipping bucket precipitation data. Although other work has 

considered using reflectivity bandwidth and horizontal wind velocity [20-21] in their 

models, their experimental results conclude that reflectivity is the only useful input while 

in this study NEXRAD-II reflectivity, velocity, spectrum width data are used. 

2.3.1  Doppler WSR-88D Radar 

The National Weather Service’s (NWS) Next Generation Radar (NEXRAD) 

system is comprised of 137 radar sites in the contiguous United States, each of with is 

equipped with Doppler WSR-88D radar capable of reporting high resolution data and 

making a full 360 degree scan every 5 minutes, with has a range of ~230km and a spatial 

resolution of about 1km by 1km (Baer, 1991). The weather station used in this study is 

located in Des Moines, IA (KDMX), which is approximately 32 km far from the tipping 

bucket locations. Reflectivity and base velocity and base spectrum width were collected 



www.manaraa.com

12 

 

 

 

from four elevation angles (tilts) of the antenna the lowest "tilt" angle 0.5° then 1.45° and 

2.40° finally 3.35°. As both the intensity and angle of the reflectivity values are required 

to describe the shape of the approaching storm, it is necessary to provide data from 

multiple angles [22]. This is also consistent with the literature [23-24]. 

 

 

 

Figure 2.1 Hydro NEXRAD image of KDMX radar coverage 

 

Precipitation is detected by the radar earlier than the rain gauge. So, the rain 

gauge data has been shifted on the time axis to synchronize the attributes in the model.  

The rain gauge sites make part of the WRA. Each instrument is equipped with 

dual buckets for quality checking purposes and redundancy. It records precipitation rate 

in 0.0001 inches/day, every 15 minutes. 
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Figure 2.2 NEXRAD reflectivity raster with WRA (Des Moines)
and Iowa City and Amana superimpose

 

Figure (2.3) shows the location of the 

and the location of the plant itself

each cell is equivalent to 1 KM. Figure 

 

 

Figure 2.3 Location of the rain gauges surrounding the plant

 

 

In Table (2.1) the latitude and longitude of each tipping bucket is shown. It gives a better 
understanding of how distant they are from one another 

 

Figure 2.2 NEXRAD reflectivity raster with WRA (Des Moines)
and Iowa City and Amana superimposed 

shows the location of the seven tipping buckets out of the 86 stations 

and the location of the plant itself in the WRA basin and the radar grid superimposed, 

each cell is equivalent to 1 KM. Figure (2.3) is derived from the reflectivity map.

Location of the rain gauges surrounding the plant

In Table (2.1) the latitude and longitude of each tipping bucket is shown. It gives a better 
understanding of how distant they are from one another then how correlated they can be.

13 

 

Figure 2.2 NEXRAD reflectivity raster with WRA (Des Moines) 

out of the 86 stations 

and the radar grid superimposed, 

is derived from the reflectivity map. 

 

Location of the rain gauges surrounding the plant 

In Table (2.1) the latitude and longitude of each tipping bucket is shown. It gives a better 
then how correlated they can be. 
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Table 2.1 Lat-long of rain gauges 

Site Name Lat Long 

TB1 41.62 -93.55 
TB2 41.60 -93.60 
TB3 41.56 -93.70 
TB4 41.61 -93.78 
TB5 41.50 -93.67 
TB6 41.60 -93.52 
TB7 41.6 -93.70 
Plant 41.57 -93.55 

 

In the Figure (2.4), it can be seen that the amount of rainfall varies greatly in each 

tipping bucket. That is why one model is made based on the TB2 station data and is 

examined to see how accurate it will perform on other locations while getting far from 

the TB2 station i.e. testing it on the other tipping buckets to find the radius of accepted 

accuracy for the prediction. In Figure (2.4), the X axis stands for time in which each unit 

is 5 minutes, and the Y axis shows the inches of precipitation. 

 

 

Figure 2.4 Rain gauge precipitation data in all 7 stations 
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2.4 Preprocessing 

Preprocessing data is a crucial step of the data mining process. Outliers, missing 

data and unreliable or low quality data all need to be considered before analysis. The 

NEXRAD data was ordered from the hydro NEXRAD site and downloaded via an FTP 

connection. A script was written in Matlab to select the closest grid points that 

corresponded with the WRA tipping bucket location. Nine grid points were selected 

about the tipping bucket location, in agreement with Liu, Chandrasekar, and Xu (2001) 

[25]. This is to provide some margin for error in the GPS mapping of the tipping buckets 

and gridding of the KDMX radar raster map. Also, rain does not fall straight down but 

may be advected horizontally. Finally, The NEXRAD data was collected at 5-min 

intervals, which is inconsistent with the temporal resolution of the tipping bucket, 

reported every 15-min. In order to make the output data suitable for time-series 

classification, the input data recorded by the different systems, e.g., radar and influent 

data are time stamped at 5 min intervals. In general, the following processing schemes are 

used. 

• Rain gauge data (15 min) is converted into high frequency data (5 min) by 

taking the average of the corresponding neighborhood time stamp data, i.e., 

-�./ 
 �-0123� 4 -0125�	
2& �2.2	 

In equation (2.2), Xnew is the new data point to be inserted, whereas, Xold-1 and 

Xold+1 are high frequency neighborhood data points, so this issue was simply dealt with 

linear interpolating missing tipping bucket data observations. 

• The continuous tipping bucket data is discretized into different output 

class of varying bin size. A description of influent range for different bin size is shown in 

Table (2.2). 

            The time series considered was from 7/1/09, 6:30 AM to 10/24/09, 11.55 PM and 

was formatted to 5-min resolution, for a total of 32,734 data points. The rest of the 

description is shown in Table (2.4). 
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Table 2.2 Discretization of the output data 

No. of bins Total influent thresholds 

2 1.0 
2.(0 - inf] 

3 1.(-inf-0.0025] 
2.( 0.0025-0.0175] 
3. (0.0175- inf] 

4 1. (-inf-0.0025] 
2. (0.0025-0.0125] 
3.  (0.0125-0.0325] 
4.  (0.0325-inf) 

 

Table (2.3) shows the parameters of the model. The first column is the full name 

and the second column is the label we used in model construction, then a short 

description and finally the unit. Overall there are 50 attributes which contains memory 

parameters for 5, 30, 60 and 90 minutes before real time for radar data and target tipping 

bucket.  
 

2.4.1 Class imbalance 

There may be two kinds of imbalances in a data set. One is between-class 

imbalance; the other is within-class imbalance. By convention, in imbalanced data sets, 

we call the classes having more examples the majority classes and the ones having fewer 

examples the minority classes. Simply said, a dataset is imbalanced if the classification 

categories are not approximately equally represented. There have been attempts to deal 

with imbalanced datasets in domains such as fraudulent telephone calls, 

telecommunications management, text classification and detection of oil spills in satellite 

images. There are different approaches to eliminate this issue. Studies show 
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Table 2.3 Parameters of the model 

Parameter Label Description Unit 

Base 
reflectivity 

Ref1 Display of echo intensity transmitted power returned 
to the radar receiver the lowest angle (0.5°) 

dBZ 

Base 
reflectivity 

Ref2 Angle of 1.45° dBZ 

Base 
reflectivity 

Ref3 Angle of 2.40° dBZ 

Base 
reflectivity 

Ref4 Angle of 3.35° dBZ 

Base velocity Vel1 The velocity of the precipitation either toward or 
away from the radar for radar "tilt" angle 0.5° 

 

Base velocity Vel2 For radar "tilt" angles, 1.45°  

Base velocity Vel3 For radar "tilt" angles, 2.40°  

Base velocity Vel4 For radar "tilt" angles  3.35°  

Base 
spectrum 
width 

SW Spectrum width a measure of velocity dispersion. It is 
recorded at same tilt angle as reflectivity 

 

Tipping 
bucket 

TB The average of 15 minutes obtained from tipping 
bucket (TB2) 

Inches 

 

that when over-sampling the minority (abnormal) class and under-sampling the majority 

(normal) class are combined, better classifier performance is achieved than only under-

sampling the majority class; like the study of Ling and Li and Gustavo [34, 26]. The 

machine learning has dealt with class imbalance in two ways. One way is assigning 

distinct costs to training examples the other is to re-sample the original dataset, either by 

oversampling the minority class and/or under-sampling the majority class [27]. 

Japkowicz discussed the three strategies as under-sampling, resampling and a 
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recognition-based induction scheme to evaluate the imbalance effect in data set [28]. The 

resampling methods were consisted of random resampling of the the smaller class till it is 

as many samples as the majority class and focused resampling which resampled only 

those minority examples that occurred on the boundary between the minority and 

majority classes. 
 

Table 2.4 Dataset sampling description 

Time span 7/1/09, 6:30 AM to 10/24/09, 
11.55 PM 

Frequency 5 minutes 

Instances 32734 

Discretized class instances Tipping bucket data 

(2 – 3 and 4 bins are modeled) 

Training dataset 7/1/09 to 9/15/09 

Testing dataset 9/15/09 to 10/24/09 

 

Some studies discussed over-sampling with replacement and have noted that it does not 

significantly improve minority class recognition [26-28]. A heuristic under-sampling 

method balanced the data set through eliminating the noise and redundant examples of 

the majority class [30]. SMOTE (Synthetic Minority Over-sampling Technique) method 

in Nitesh’s study generated new synthetic examples along the line distinguishing 

minority and majority  by producing new minority in their nearest neighbors it makes the 

decision regions larger [31]. He also improved minority classification by integrating 

SMOTE into a standard boosting procedure class while the whole accuracy of test set was 

not sacrificed [32]. Estabrooks proposed a multiple resampling method which selected 

the most appropriate re-sampling rate adaptively [33]. Technique SMOTE proposes an 
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over-sampling approach in which the minority class is over-sampled by creating 

“synthetic” examples rather than by over-sampling with replacement and generates 

synthetic examples in a less application-specific manner, by operating in “feature space” 

rather than “data space”. The minority class is over-sampled by taking each minority 

class sample and introducing synthetic examples along the line segments joining any/all 

of the k minority class nearest neighbors. Depending upon the amount of over-sampling 

required, neighbors from the k nearest neighbors are randomly chosen. Our 

implementation currently uses five nearest neighbors. For instance, if the amount of over-

sampling needed is 200%, only two neighbors from the five nearest neighbors are chosen 

and one sample is generated in the direction of each. The effect is that decision trees 

generalize better [29]. 

The ROC curve is a helpful metric to evaluate the learners for imbalanced data 

sets. FP rate denotes the percentage of misclassified negative examples, and TP rate is the 

percentage of correctly classified positive examples. The ROC curve depicts relative 

trade-offs between benefits (TP rate) and costs (FP rate). The point (0, 1) is the ideal 

point of the learners.  AUC (Area under ROC) can also be applied to evaluate the 

imbalanced datasets.  

SMOTE is applied in this research a filtering supervised instanced based 

preprocessing step to resample the minority classes. Results are shown in Table (2.5) for 

3 and 4 bins. In each resampling step, the percentage varies. The first bin which contains 

zero value is the majority so there will be zero percent of resampling for that and for the 

rest of the bins percentage of resampling will be decided to get closer to the frequency of 

first bin (majority). Accuracy before and after application of SMOTE is shown below, 

overall accuracy may decrease while G-mean certainly increases, G-mean is an 

evaluation index which shows that accuracy of all classes have been satisfactory. 
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Table 2.5 Comparing results after application of SMOTE 

Number 
of bins 

Thresholds Accuracy (%) 
Before  

Accuracy (%) 
After 

3 
bins 

(-inf-0.0025] 99.50 98.1 
( 0.0025- 0.0175] 77.10 93.5 
(0.0175- inf] 88.00 97.1 
Total 98.70 96.2 

4 bins (-inf-0.0025] 99.50 97.40 
(0.0025- 0.0125] 76.20 94.10 
(0.0125- 0.0325] 73.90 96.10 
(0.0325- inf) 86.20 95.50 
Total 98.50 95.90 

 
 
 

The process of resampling the minority classes is shown in Figure (2.5). Resampling is 

applied for each minority class in a loop until we get to the closest number to the account 

of the majority class which is 31229 for both 3 and 4 bins.  

 

2.1 Parameter selection 

While correlation measures the strength of the linear relationship, nonlinear 

relationships may exist in the data set. Heuristic feature selection algorithms are often 

used in the field of computational intelligence to find optimal subsets for modeling 

nonlinear phenomenon. The feature selection algorithms selected is boosted tree 

algorithm, as in the previous chapters. These algorithms are “wrapped” within the DT 

algorithm to find the parameters in the data that result in the best model. In other words 

this algorithm employs a heuristic approach to training and testing data subsets in search 

of a local optimum.  
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Figure 2.5 SMOTE process in re-sampling the minority classes 

 

Tables (2.6) and (2.7) show the results of the feature selection with boosted tree 

which will be discussed later in this Thesis. To get a better feature selection, we remove 

the memory parameters of the tipping bucket data to see the ranking of other attributes 

without the effect of the memory parameter of the tipping bucket since it is so dominant. 

Elected ones have higher importance than 0.5. 

In fact there is no necessity to select some features while with these 50 features 

the selected algorithm does the classification in a few minutes. But to get a better 

understanding about the model and the attributes we do the feature selection for 3 bins 
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and 4 bins as are shown in Tables (2.6) and (2.7) respectively. Finally the attributes with 

importance rank above 50 % in addition to the memory parameters of the tipping buckets 

are considered to be more important. 
 

 

Table 2.6 Feature selection for 3 bins 

WMPTB WAMPTB 

tb(t-5) ref1(t-
30) 

vel1(t-
60) 

sw(t-90) ref1(t-5) vel2(t) sw(t) vel1(t-
60) 

tb(t-30) ref1(t-5) vel2(t-
30) 

ref2(t-
60) 

ref1(t-
30) 

vel2(t-5) ref2(t-5) ref2(t-
90) 

tb(t-60) ref1(t) vel1(t-
90) 

ref2(t) ref1(t) vel1(t) ref2(t) vel2(t-
60) 

tb(t-90) vel2(t-
90) 

vel2(t-
60) 

ref2(t-
90) 

ref1(t-
60) 

vel1(t-5) sw(t-60) ref3(t-
90) 

ref1(t-
60) 

vel2(t) vel1(t) vel1(t-
30) 

ref1(t-
90) 

sw(t-90) vel1(t-
30) 

sw(t-30) 

ref1(t-
90) 

vel2(t-5) ref2(t-5)  vel1(t-
90) 

vel2(t-
30) 

vel2(t-
90) 

 

 
 
 

2.1.1 Boosted tree 

It is crucial to have a feature selection mechanism that can find a subset of 

features that both meets latency requirements and achieves high relevance. Boosted trees 

(and boosting algorithms in general) have been used widely as a learning algorithm for 

ranking search results; there are many advantages of using boosted trees as a learning 

algorithm for ranking. For example, no normalization is needed when using. Different 

types of data (e.g., categorical and count data); trading off runtime efficiency and 

accuracy (i.e., relevance for search) can be easily achieved by truncating the number of 

trees used in the boosted trees model. 
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Table 2.7 Feature selection for 4 bins. 

WMPTB WAMPTB 

ref1(t) ref3(t-90) tb(t-5) vel1(t) 

vel1(t-5) ref2(t-90) tb(t-30) vel1(t-5) 

ref1(t-5) sw(t-5) tb(t-60) vel1(t-30) 

ref1(t-30) vel3(t-60) tb(t-90) ref2(t) 

vel2(t-5) vel2(t-60) ref1(t-90) ref2(t-60) 

ref1(t-90) ref3(t-60) vel2(t-90) ref2(t-5) 

vel1(t) ref2(t-5) vel2(t-30) sw(t-90) 

vel2(t-90) ref2(t-60) ref1(t-60) sw(t-60) 

vel2(t) sw(t-30) ref2(t-90) ref2(t-30) 

ref1(t-60) ref3(t-5) ref1(t-5) sw(t-5) 

vel2(t-30) ref3(t) vel2(t-60) sw(t) 

ref2(t) vel4(t) vel2(t-5) sw(t-30) 

 

 

 

From the perspective of feature selection, a more interesting property of the 

boosted trees is that (a greedy) feature selection already happens in the algorithm when 

selecting splitting features (e.g., for regression trees, splitting features and splitting points 

are found to minimize the squared-error loss for any given partition of  the data). 

Moreover, as a byproduct, a sorted list of relative importance of features (i.e., a feature 

importance list) is automatically generated for each boosted trees model. The relative 

WMPTB: without memory parameter of tipping bucket, 
IR: importance rank, WAMPTB: With all memory 
parameters of tipping bucket 
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influence of a feature xj for a single decision tree to boosted trees as an average over all 

the trees can be generalized as  
 

89:; 
 1 =⁄ ∑ 89:;>?�� �" 	 (2.3) 
 
where M is the number of trees. For each tree the relative importance is calculated as 
 

89:;�"	 
  ∑ @9#;A3�#�� 1�B# 
 C	 (2.4) 

 

where the summation is over the internal nodes t of a L-terminal node tree T, vt is the 

splitting feature associated with node t, and @9#;
 is the corresponding empirical 

improvement in squared-error as a result of the split. 

2.2 Model training/testing 

In training and testing of a data-driven model, there is always a balance between 

accuracy and overfitting, or lack of generalizability, of the model. Especially for the 

purpose of this research, which is to establish a model that can be used at other tipping 

bucket locations, generalizability is of great importance. Following Tan et al. (2006), 2/3 

of the dataset was used for training, and 1/3 for testing, which is a common split to 

balance generalizability with accuracy [36]. The networks were tested for predicting the 

rainfall rate (mm/hr) at the Des Moines tipping buckets. Using Weka’s “(J48)” option 

Decision Trees were generated.  

2.3 Metrics for Algorithm Evaluation 

Three evaluation indexes namely accuracy, sensitivity, and specificity are used to 

assess the agreement between ground rain gauges and total influent model values. The 

evaluation is based upon well-known confusion matrix. Table (2.8) displays the 

confusion matrix of 3 output class.   
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Table 2.8 Description of confusion matrix 

  Actual 
  C1 C2 C3 

Predicted 
C1 TP1 FP21 FP31 
C2 FP12 TP2 FP32 
C3 FP13 FP23 TP3 

 

 

DEEF��E� 
 ∑ "������ ∑ G"�� 4 H��:I��&:��
K      n is the number of bins                          

(2.5) 
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(2.6) 
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(2.7) 
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(2.8) 

In equations (2.5) to (2.8) TPi is the number of correctly classified instances in 

class i (i=1, 2, 3), whereas, FPij is the number of incorrectly classified instances from 

class i in class j.  

2.4 Results  

The results for this research are categorized to two main parts. First is the 

prediction ahead for the rain gauge named TB2; second, is finding the radius under which 

the accuracy of the model stays above 85 %, by testing the algorithm in the other rain 

gauges’ locations.  
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2.4.1 Prediction 

The forecasting model by Decision Tree (J48) is shown in the Table (2.9), 

respectively for 5, 30, 60 and 120 minutes ahead. The result for time t is the total 

accuracy of the model after feature selection and application of SMOTE. As shown in 

Table (2.9), the accuracy up to 2 hours is very high. 

 

 
Table 2.9 Prediction results by total accuracy 

No. of Bins t t+5 t+30 t+60 t+120 

3 96.1 95.44 94.89 94.60 94.21 

4 95.9 95.2 94.58 94.58 94.21 

 

 

2.4.2 Radius of accuracy 

Among all these 7 tipping buckets in the plant, TB7 has the highest correlation 

with the TB2 station, shown in Table (2.10), because it is the closest one to it. Even 

though the rain gauges are not that far from each other, the amount of rainfall recorded by 

them is so variant. Moreover level of correlation cannot be decided only by closeness, 

height, being located in upstream or downstream level are all effective on tipping bucket 

records. 

 Here the results of the comparison among the other six rain gauges have been 

discussed. We have 7 tipping buckets in the wastewater plant, so we made the model 

based on the radar data and rain gauge data of the TB2 station to find out how distant this 

model works accurately. We tested the other six ones which are distant from the TB2 

station as shown in the Table (2.11) and they were depicted in the Figure (2.6). 
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Table 2.10 Correlation coefficients among rain gauges. 

 TB2 TB1 TB6 TB5 TB3 TB7 TB4 

TB2 1.00 0.49 0.33 0.47 0.36 0.72 0.52 

TB1 0.49 1.00 0.63 0.56 0.40 0.30 0.29 

TB6 0.33 0.63 1.00 0.53 0.37 0.22 0.23 

TB5 0.47 0.56 0.53 1.00 0.53 0.32 0.34 

TB3 0.36 0.40 0.37 0.53 1.00 0.27 0.35 

TB7 0.72 0.30 0.22 0.32 0.27 1.00 0.65 

TB4 0.52 0.29 0.23 0.34 0.35 0.65 1.00 

 

 

In Table (2.11), the results of the total accuracy of the Decision Tree, algorithm 

(J48) on the other rain gauges around TB2 is shown. The best accuracy belongs to TB7 

and the worst to TB3 as we define the accepted threshold for the accuracy as 95% so the 

maximum distance that this model can be used to result the desired accuracy is the 

maximum available distance, 33.13 km.  

 

 
Table 2.11 Total accuracy of the model tested on the other gauges 

 

 

  

 

 

 

 

No. Tipping bucket Distance from TB2(KM) Total accuracy (%) 

1 TB6 8.48 96.80 

2 TB1 11.04 96.12 

3 TB3 18.97 95.19 

4 TB7 21.47 96.85 

5 TB5 21.63 96.55 

6 TB4 33.13 96.01 
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2.5 Conclusion 

This chapter describes the development of a decision tree trained with NEXRAD-II 

reflectivity, velocity and spectrum width data from a weather station in Des Moines, IA 

and tipping bucket rain gauge data from WRA in West Des Moines, IA.  The model was 

synced with real time radar and tipping bucket data to provide rainfall estimation.  The 

motivation for a system of rainfall estimation is to provide higher resolution precipitation 

input for hydrological models.  The model compared with previous regression algorithms 

for converting reflectivity data to precipitation, outperformed in longer prediction. 

This paper had an overview on the resampling the majority class “SMOTE” and 

description of mathematical section for decision trees since it was the most accurate in 

the classification models for precipitation. Boosted tree was selected as tool for feature 

selection. Prediction of 120 minutes ahead had the accuracy of 94 %, and the model was 

accurate for the maximum available radius of 33.13 km, hence the accuracy of the model 

did not deteriorate by getting far from the tipping bucket which the model was built on, it 

just varied. 
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CHAPTER 3.   TOTAL INFLUENT MODELING 

3.1 Introduction 

To maintain stable effluent characteristics in a wastewater treatment plant 

(WWTP), it is desirable to know in advance the influent flow rate to the wastewater 

treatment plant. Wastewater characteristics such as biochemical oxygen demand (BOD), 

total suspended solids (TSS), and pH [56-57] are strongly correlated to the influent flow 

rate. Prediction of the influent flow rate is helpful in optimally scheduling wastewater 

pumps.  

In practice, the influent flow rates are usually estimated by the operators based on 

experience and local weather forecasts [58]. However, such estimations are not accurate 

enough to manage WWTPs, especially for plants that treat both municipal wastewater 

and storm rainfalls [59]. The precipitation may cause large variability of the influent flow 

rate, and thus reducing efficiency of WWTPs. Heavy rainfalls overwhelm the wastewater 

treatment system, causing spills and overflows.  

Several studies have been performed to model and predict the influent flow rate to 

wastewater treatment plants [60-61]. Tan et al. [62] used a direct k-step predictor to 

forecast the wastewater flow rate and obtained reliable predictions up to 2 h ahead for 

wet weather sewer flow. Using recursive ARX (autoregressive with exogenous input) 

filters, a model based on the flow pattern estimation could handle rainy conditions for 

prediction horizons of a few hours [63]. 

Data-mining is a promising approach to build prediction models. It is the process 

of finding patterns from data by algorithms versed on the crossroads of statistics and 

computational intelligence [64].  

Considering the association between the amount of rainfall and influent quality, 

radar data measuring the rainfall are analyzed in the present study. Using historical radar 

and rainfall data an accurate prediction model can be built. Data mining techniques such 
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as neural networks (NN), support vector machine (SVM) etc. are capable of learning 

complex relationship between input parameters and therefore widely used in literature 

pertaining to qualitative prediction estimation (QPE) and quantitative precipitation 

forecast (QPF) of rainfall [37].   

Weather radars generally apply a Z-R relationship as mentioned before to relate 

the measured variable. Reflectivity is mostly chosen among radar products since 

reflectivity at the lowermost elevation is related to the rain rate [3].  

Weather radar has been studied to estimate rainfall quantity in spite of being often 

considered qualitative. The advantage of weather radars is about high temporal 

resolution, a full volume scan within to reveal a three-dimensional structure of 

precipitation. Radars work by sending out an electromagnetic beam and measuring how 

much of the energy of that beam is reflected back.  For precipitation forecasting, 

researchers use radar-derived rainfall products in real-time. Another approach is a 

satellite derived precipitation algorithm [15]. 

The flow monitoring program which includes installation of over 80 flow meters 

throughout the metro will allow monitoring raw flow in every section of the metro as 

well as a control for routing raw flow around the metro to storage basins.  Knowing the 

amount of total influent a few hours ahead makes it possible to decrease the impact of 

diurnal flow. 

Data mining has been promising in climatic measurement and the models trained 

and built by data mining algorithm can be easily updated [38], it is used to build a model 

for total influent prediction over a short time horizon 30 – 60–120 and 180 minutes 

ahead. The models are built using the historical data collected by flow monitoring 

program installed in the WRA plant for 6 locations surrounding the plant and radar data 

extracted from NCDC website and total influent to the plant. 
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3.2 Problem background 

3.2.1 Wastewater reclamation authority (WRA)  

The treatment plant is located in Des Moines, Iowa and has been operated by the 

City of Des Moines since 1987. In 2005, WRA was designed to serve a population of 

317,930 with the average raw wastewater flow load of 50 million gallons per day. The 

ultimate goal of WRA for 2020 is to serve a population of 389,200 with the processing 

capacity of 74 million gallons per day.  

WRA is 77 acre over a mile long. It includes preliminary treatment, 6 primary 

clarifiers, 12 roughing filters, 6 aeration tanks, 12 final clarifiers, disinfection, 2 chlorine 

contact tanks, 3 rotating drum filters (RDT), 6 anaerobic digesters, solids handling and 

treatment, bio-solids disposal and 8 bio filters for odor control. 

3.2.2 Data description  

In the research reported in this paper, three years and three months long rain 

gauge and total influent data from the Wastewater Reclamation Authority (WRA) 

spanning from 1/1/2005 until 3/31/2008 was used. 

The weather radar in the Des Moines area is located about 32 km from the WRA 

plant. The KDMX station at Des Moines is located 41.7311N, 93.7228W Elevation while 

plant is 41.5712 N, 93.5862 W as shown in Figure (3.1). 

The location of 7 rain gauges out of the 86 stations and the location of the plant 

are the same as described before in chapter 2, Figure (2.3). In this research only six of 

these rain gauges are used in making the model since one of them named TB7 was 

recently installed and could not provide the information which was required. 
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Figure 3.1 The location of KDMX radar and the WRA plant and the distance 
between 

 

Table (3.1) describes the input parameters used in the current research. Each rain 

gauge has four parameters including reflectivity at 4 different heights (1km, 2 km, 3 km 

and 4 km height). In addition, to improve the prediction accuracy of the data mining 

algorithm, memory parameters have been used [39]. The memory parameters for all 

inputs and influent output recorded 30 minutes ago, 60 minutes ago, 90 minutes ago and 

120 minutes before time e.g., t-30, t-60, t-90 and t-120 respectively are included in model 

construction. Overall, the data consist of 55 input parameters. 

 

 

 

Distance= 32 km 
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Table 3.1 Parameters of the model 

Parameter Label Description Unit 

Reflectivity at 
CAPPI height 1 km 

c1 
Radar display which gives a horizontal cross-
section of data at constant altitude, here it is 1 
km 

dBZ 

Reflectivity at 
CAPPI height 2 km 

c2 Altitude of 2 km dBZ 

Reflectivity at 
CAPPI height 3 km 

c3 Altitude of 3 km dBZ 

Reflectivity at 
CAPPI height 1  4 
km 

c4 Altitude of 4 km dBZ 

Tipping bucket 
data, named TB2 

TB2 
The average of 15 minutes obtained from 
tipping bucket (TB2) 

Inches 

Tipping bucket 
data, named TB3 

TB3 
The average of 15 minutes obtained from 
tipping bucket (TB3) 

Inches 

Tipping bucket 
data, named TB1 

TB1 
The average of 15 minutes obtained from 
tipping bucket (TB1) 

Inches 

Tipping bucket 
data, named TB5 

TB5 
The average of 15 minutes obtained from 
tipping bucket (TB5) 

Inches 

Tipping bucket 
data, named TB7 

TB7 
The average of 15 minutes obtained from 
tipping bucket (TB7) 

Inches 

Tipping bucket 
data, named TB6 

TB6 
The average of 15 minutes obtained from 
tipping bucket (TB6) 

Inches 

Tipping bucket 
data, named TB4 

TB4 
The average of 15 minutes obtained from 
tipping bucket (TB4) 

Inches 

Total influent Inf 
Raw Wastewater Flow (In building05) low:0 
and high: 260 

MGD 

 

The CAPPI is composed of data from each angle that is at the height requested for 

the cross-section. In the early days, the scan data collected where shown directly on the 

cathodic screen and a photo sensitive device captured each ring as it was completed. 

Then all those photographed rings were assembled. Weather radars collect in real time 

data on a large number of angles. 

Information about various memory parameters is shown in Table (3.2).  The first 

two year and three months of the data constitute the training set 1/1/05 to 4/30/07, 

whereas, remaining about 1 year is used to construct the prediction models at various 



www.manaraa.com

34 

 

 

 

time stamps 3/31/07 to 4/30/08. For frequency of 15 minutes there are 114048 numbers 

of samples, also discretized classes of output for three and four bins. 

 

 
Table 3.2 Attribute labels 

TB1c1 TB7c2 TB6c4 TB1(t-30) TB3(t-120) 

TB2c1 TB1c3 TB7c4 TB3(t-60) TB6(t-120) 

TB3c1 TB2c3 TB3(t) TB6(t-60) TB7(t-120) 

TB4c1 TB3c3 TB6(t) TB7(t-60) TB5(t-120) 

TB5c1 TB4c3 TB7(t) TB5(t-60) TB1(t-120) 

TB6c1 TB5c3 TB5(t) TB2(t-60) TB1(t-120) 

TB7c1 TB6c3 TB2(t) TB1(t-60) Infl(t-30) 

TB1c2 TB7c3 TB1(t) TB3(t-90) Infl(t-60) 

TB2c2 TB1c4 TB3(t-30) TB6(t-90) Infl(t-90) 

TB3c2 TB2c4 TB6(t-30) TB7(t-90) Infl(t-120) 

TB4c2 TB3c4 TB7(t-30) TB5(t-90) Infl(t) 

TB5c2 TB4c4 TB5(t-30) TB2(t-90) - 

TB6c2 TB5c4 TB2(t-30) TB1(t-90) Time date  

 

 

3.3 Research methodology  

In this section, description of the proposed approach is provided. In coming sub-

section, different data-processing techniques are discussed.  
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3.3.1 Data preprocessing 

In order to make the output data suitable for time-series classification, the input 

data recorded by the different systems e.g., radar and influent data are time stamped at 15 

min intervals. In general, following pre-processing schemes are used. 

Since the radar image covers the location of all tipping buckets, the reflectivity 

data at nine surrounding cells (dimension of each cell is 1 km by 1 km) around the center 

of the tipping bucket on the radar map as well as the reflectivity at the center are 

extracted and averaged for each tipping bucket. In the original dataset, some null values 

(denoted as -99) were present, implying that the radar signal has not been detected. These 

null values are treated as the missing values. When the reflectivity at the center and nine 

surrounding cells were all nulls, the average value of the preceding and succeeding 

neighbor values are used as the reflectivity for this particular tipping bucket. The radar 

data are also averaged over 15 min intervals. 

The influent flow rate data is measured at 15 s intervals. It is converted into 15 

min average data to bring it to the same frequency as the rainfall rate data. The upper and 

lower limit on the influent flow rate is 0 and 260 million gallons per day, respectively. 

The values beyond the limits are considered as outliers and are removed in preprocessing 

the data.  Then UTS offset time is applied for radar data, this shift is done to convert the 

UTC to local time. The continuous influent data is discretized into different output class 

of varying bin size. A description of influent range for different bin size is shown in 

Table (3.3). Discretization is done by WEKA unsupervised attribute filtering with same 

frequency in each bin. 
 

3.3.2 Evaluation metric 

Three evaluation indexes namely accuracy, sensitivity, and specificity are used to 

assess the agreement between ground rain gauges and total influent model values. The 
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evaluation is based upon well-known confusion matrix that has been described in 

previous sections. 

 
Table 3.3 Discretization of output data 

No of 
bins 

Total influent thresholds 

3 1. (-inf-38.221052] 
2. (38.221052-49.149128] 
3. (49.149128-inf) 

4 1. (-inf-35.374013] 
2.  (35.374013-43.207119] 
3.  (43.207119-52.403524] 
4. (52.403524-inf) 

 

3.4 Feature selection and model construction 

To obtain a fast and accurate model, the original high dimension data should be 

reduced to low dimension. In the dataset, there are 63 parameters, including memory 

parameters recorded 30 minutes earlier (t-30), 60 minutes earlier (t-60), 90 minutes 

earlier (t-90) and 120 minutes earlier (t-120) for tipping bucket values and total influent 

data. In the research, different methods are applied to select features, like filtered attribute 

eval - ranker, filtered subset eval-greedy stepwise, CSFsubset eval-greedy stepwise, info 

gain attribute evaluator, wrapper subset eval-greedy stepwise and Feature selection in 

Statistica. These algorithms can greatly reduce the dimension of the input parameters by 

ranking the parameters based upon their importance to the target output. For example, 

boosting tree algorithm uses gradient boosting approach to predict the importance of 

input parameters [39]. A list of top 20 parameters is displayed in Table (3.4) and Table 

(3.5) for 3 and 4 bins discretization respectively. As anticipated, memory parameters of 

output class e.g., influent are found to be closely associated with the target output. 

However, in order to select other potential input parameters, a threshold value of 0.02 is 

set. Also radar data at 1 km for different tipping bucket locations are more important than 
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the tipping bucket data. In each table first row indicates the name of the attribute 

evaluator and second row shows the searching method. 

As can be observed in the tables above, memory parameters are selected mostly as 

the most important ones then radar data for the closest altitudes; 1, 2, 3 and 4 km 

respectively. 

Five promising data mining algorithms namely decision tree (J48), k-nearest 

neighbor (k-NN), Support vector machine (SVM), Naïve Bayes (NB), Logistic regression 

(LR) and Radial Basis Function (RBF) are initially selected to build prediction model at 

time stamp t. 

  
Table 3.4 Attribute selection for 3 bins 

Filtered attribute 
eval 

CFS subset eval Wrapper subset 
eval 

Feature selection -
statistica  

Ranker Greedy 
stepwise 

Greedy stepwise Chisquare and Pvalue 

Infl(t-30) Infl(t-30) TB1c1 TB2c1 
Infl(t-60) Infl(t-60) TB2c1 TB3c1 
Infl(t-90) Infl(t-90) TB3c1 TB4c1 
Infl(t-120) Infl(t-120) TB4c1 TB5c1 
TB2c1 TB2c2 TB5c1 TB6c1 
TB2c2 TB3(t-90) TB6c1 TB7c1 
TB2c3 TB2(t) TB7c1 TB1c2 
TB2c4 TB5c4 TB1c2 TB2c2 
TB7c4 TB1c2 TB2c2 TB3c2 
TB7c1 TB1(t-120) TB3c2 TB4c2 
TB7c3 TB4c2 TB4c2 TB5c2 
TB7c2 TB5(t) TB5c2 TB6c2 
TB3c1 TB2(t-120) TB6c2 TB7c2 
TB1c4 TB6c1 TB7c2 TB1c3 
TB3c2 TB7c4 TB1c3 TB2c3 
TB4c4 TB7(t-30) TB2c3 TB3c3 
TB4c3 TB3c1 TB3c3 TB4c3 
TB6c1 TB2(t-60) TB4c3 TB5c3 
TB4c3 TB2c4 TB5c3 TB6c3 
TB1c2 TB7(t-120) TB6c3 TB7c3 
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Among the selected set of algorithms, decision tree and logistic regression 

algorithms outperformed other algorithms Table (3.6). Since, the model constructed by 

decision tree algorithms are easy to comprehend, therefore, it has been finally selected to 

build prediction model at all of the time stamps. Various trees were applied for modeling, 

like random forest, random tree, REP tree and J48 which the most promising result was 

obtained by J48. 

 

 
Table 3.5 Attribute selection for 4 bins 

Filtered attribute 
eval 

Gain ratio attribute 
eval 

Feature selection -
statistica  

OneRAttribute eval 

Ranker Ranker 
Chisquare and 
Pvalue 

Ranker 

Inf(t-30) Inf(t-30) TB2c1 Inf(t-30) 
Inf(t-60) Inf(t-60) TB3c1 Inf(t-60) 
Inf(t-90) Inf(t-90) TB4c1 Inf(t-90) 
Inf(t-120) Inf(t-120) TB5c1 Inf(t-120) 
TB2c3 TB2c3 TB6c1 TB2c3 
TB2c4 TB3(t-120) TB7c1 TB2c4 
TB2c2 TB3(t-90) TB1c2 TB2c1 
TB7c4 TB2c4 TB2c2 TB7c4 
TB7c3 TB3(t-60) TB3c2 TB2c2 
TB7c2 TB7(t-120) TB4c2 TB6c2 
TB4c4 TB2c2 TB5c2 TB7c3 
TB7c1 TB7(t-90) TB6c2 TB1(t-30) 
TB4c3 TB7(t-60) TB7c2 TB1(t) 
TB2c1 TB3(t-30) TB1c3 TB1(t-120) 
TB4c2 TB7c4 TB2c3 TB1(t-90) 
TB4c1 TB7c3 TB3c3 TB1(t-60) 
TB3c1 TB6(t-60) TB4c3 TB1c4 
TB1c4 TB6(t-120) TB5c3 TB6c1 
TB1c3 TB6(t-30) TB6c3 TB3c4 
TB3c2 TB6(t-90) TB7c3 TB6c4 
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Table 3.6 Algorithm selection for 3 bins of output class 

 

 

 

 

 

 

 

 

Table 3.7 Algorithm selection for 4 bins of output class 

 

 

  

 

 

 

 

 

 

 

 

Summary of the results obtained through decision tress algorithm over different 

output bins is shown in Table (3.8). The overall accuracy of the model is always found in 

the range 90%-93% for different bin size, whereas, g-mean of the output class was also 

found to be high, indicating algorithm is able to correctly predict all output classes. 

  Prediction Accuracy (%)   

 Output class   
Overall 

Algorithms  (-inf-
38.221052] 

(38.221052- 
49.149128] 

(49.1491
28- inf] 

 

J48 94.4 90.9 93.8 93.0 

k-NN (k=5) 92.0 86.1 90.4 89.5 
NB 89.6 83.4 91.1 87.7 
LR 94.4 90.8 94.0 93.0 
RBF 89.9 83.4 90.9 87.8 

  Prediction Accuracy (%)   

 Output class   
Overall 

Algorithms 

 (
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J48 92.7 86.1 88.8 95.1 90.7 

k-NN (k=5) 89.8 78.7 82.8 92.31 85.8 
NB 87.5 75.6 79.8 92.1 83.8 
LR 92.8 87 88.6 95.3 90.6 
RBF 87.7 74.5 80.6 91.8 83 
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In this part results which were derived from training data set are shown in tables 

and figures. In this section models built using decision tree algorithms at various time 

stamps are discussed. Evaluation criteria namely accuracy, sensitivity, specificity and g-

mean are analyzed for models built for various bin size.   

Here classification matrix can be seen in Figures (3.2) and (3.3) respectively for 

three and four bins. These figures are displayed to graphically visualize the accuracy of 

individual output class. 

 

 
Table 3.8 Results obtained using decision tree algorithm on training set 

No. of 

bins 

Total influent 

threshold 
TP rate 

Precision 

(PPV) 

Recall 

(sensitivity) 
G-mean 

3 

(-inf-38.22]  94.4 94.4 94.4 

93.1 ( 38.22-49.14]  90.9 90.9 90.7 

(49.14- inf] 93.8 93.8 94.2 

4 

(-inf-35.37]  92.7 92.8 93.1 
90.6 

 

 

(35.37- 43.20]  86.1 87.1 87 

(43.20- 52.40]  88.8 88.7 88.5 

(52.40-inf)  95.1 95.3 95.1 

 

The relative dense accumulation of data points along the actual-predicted axis of 

output bins indicate the output classes are correctly predicted most of the time. In the 

figures below, x and y axis represents the predicted and observed class respectively.  
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Figure 3.2 Classification matrix for three bins 

Figure 3.3 Classification matrix for four bins 
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3.5 Computational results 

 

3.5.1 Test results 

The results of applying the algorithm on testing interval are shown in Table (3.9). 

Testing interval is from 3/31/07 to 4/30/08 the result is as promising as training set. 

 

 
Table 3.9 Results obtained using decision tree algorithm on training set 

No. of 
bins 

Total influent 
threshold 

TP rate 
Precision 
(PPV) 

Recall 
(sensitivity) 

G-
mean 

Total 
Accuracy 

3 
(-inf-38.22]  91.3 91.3 91.5 

91.4 92.8 ( 38.22-49.14]  87.7 87.7 87.2 
(49.14- inf] 95.6 95.6 95.8 

4 

(-inf-35.37]  90.0 90.0 90.0 

89.5 90.8 
(35.37- 43.20]  85.3 85.3 85.3 
(43.20- 52.40]  88.2 88.2 88.2 
(52.40-inf)  94.8 94.8 94.8 

 
 
 

3.5.2 Prediction results 

Table (3.10) and (3.11) display the overall accuracy obtained using decision tree 

algorithms by WEKA. Algorithm is accurate enough to predict influent up to 60 minutes 

in the future; however, the accuracy drops in further time-stamps.  

 
Table 3.10 Three bins prediction 

Class label 
Total accuracy 
Y(t) 

t+30min t+ 1 hr t+ 2 hr t+ 3 hr 

 (-inf-38.221052] 91.3 84.7 78.4 66.4 55.9 
(38.221052- 
49.149128] 

87.7 80.2 72.8 58.7 47.0 

(49.149128- inf] 95.6 93.6 91.6 87.5 83.5 
total 92.8 88.6 84.5 76.5 69.4 
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Table 3.11 Four bins prediction 

Class label Total accuracy t t+30min t+ 1 hr t+ 2 hr t+ 3 hr 
 (-inf-35.374013] 90.0 83.7 77.4 66.3 57.0 
(35.374013- 
43.207119] 

85.3 74.4 63.8 46.6 35.8 

(43.207119- 
52.403524] 

88.2 80.5 72.9 58.8 48.1 

(52.403524- inf) 94.8 91.8 88.8 83.0 77.9 
Total 90.8 84.7 78.7 68.0 59.8 

 
 

3.6 Regression (time series regression) 

A data-mining approach to predict influent flow rate in a wastewater treatment 

plant for a short-term period (up to 180 min ahead) is presented. The prediction model is 

constructed by data-mining algorithms using radar reflectivity data, rainfall rate data, and 

the historical influent flow rate data. Radar reflectivity data can be used to forecast 

weather several hours or even several days ahead. In the regression model, inputs and 

output for this model are the same as classification model in previous sections. Sampling 

interval is 1/1/2007 2:00:00 AM to 3/31/2008 11:45:00 PM, with the frequency of 15 

minutes, there are 43768 instances. Training interval is 1/1/2007 2:00:00 AM to 

11/1/2007 12:15:00 AM and it is tested over 11/1/2007 12:30:00 AM to 3/31/2008 

11:45:00 PM. A multilayer perceptron neural network (MLP) is used to build the 

prediction model and compare its accuracy with models constructed by three other data-

mining algorithms. The best performing algorithm is selected to build the prediction 

model. The prediction results are evaluated by prediction metrics and discussed in detail. 

In Figure (3.4) it can be observed that the amount of rainfall varies from one 

location to other location and based on correlation coefficient matrix there is a nonlinear 

relation among them. 
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Figure 3.4 Rainfall comparisons among six tipping  
buckets in WRA area 

 

3.6.1 Data preprocessing 

The historical values of influent flow rate, rainfall rate, and radar reflectivity are 

used to construct the prediction model. The influent flow rate data was collected at the 

Des Moines Wastewater Reclamation Facility (WRA), Iowa. WRA processed wastewater 

from 16 metro area municipalities, counties and sewer districts in the Des Moines area. 

Also, the tipping bucket values were recorded to the 0.0001 mm/hr, which seemed 

excessively precise. These values were rounded to the nearest 0.01 mm/hr for modeling 

purposes. And the rest of the preprocessing steps are the same as the classification except 

discretization which is not required in this section. Training and testing intervals are the 

same as previous section.   
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3.6.2 Feature selection and algorithm selection 

Three methods are used for feature selection, boosted tree, random forest and 

feature selection in Statistica software. The results are listed below in the Table (3.11). 

 

 
Table 3.12 Feature selection results by different methods 

Boosted tree Random forest Statistica 
infl(t-15) infl(t-60) TB5(t-30) 

infl(t-30) infl(t-90) TB7(t-30) 

infl(t-45) infl(t-15) TB2(t-30) 

infl(t-60) infl(t-45) TB7(t-60) 

infl(t-90) infl(t-30) TB7(t-90) 

infl(t-120) infl(t-120) TB1(t-30) 

TB7(t) TB2(t-30) infl(t-60) 

TB2(t-60) TB7(t-30) TB5(t-60) 

TB5(t) TB2(t-90) TB5(t-90) 

TB1(t) TB2(t-120) TB7(t-120) 

TB7(t-60) TB5(t) TB6(t-60) 

 

As shown in the tables above tipping bucket memory parameters are not effective 

on the output significantly while memories of total influent radar data of 1, 2, 3 and 4 km 

of some locations are recognized as important ones. Different data-mining algorithms are 

used to build the prediction model for prediction of the influent flow rate. Two metrics, 

the mean absolute error (MAE) and mean squared error (MSE) are used to measure 

prediction accuracy. MAE is a common used quantity in time series analysis to measure 
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how close the predictions are to the observations. MSE is a way to quantify the difference 

between the values implied by the prediction method and the true values. It is a risk 

function corresponding to the expected value of the squared error loss. The expressions to 

calculate MAE and MSE are shown in (3.1) and (3.2) and the trained algorithms are 

shown in Table (3.12). The most promising results are obtained by NN. 

 
Table 3.13 Regression model accuracy 

No. Algorithm MAE 
Correlation 
coefficient MSE 

1 NN 
1.095 0.988 4.215 

2 Random forest 
3.041 0.945 20.699 

3 Boosted tree 
1.776 0.970 11.162 

4 SVM 
1.476 0.985 5.461 
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3.6.3 Computational results 

MLP is chosen as the best algorithm, here are the results in Table (3.13) for 5 best 

MLPs. Using Statistica’s “Automatic Network Search” option 200 MLP’s were generated 

with random attributes. Some of these characteristics were learning rate, momentum, 

number of hidden layers, and number of nodes.  The activation functions tried in the 

neurons were the identity, logistic, tanh, and exponential functions.  The top 5 performing 

MLPs were retrained (tuned).  
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Table 3.14 Five best MLPs 

Net. name Training 
perf. 

Test 
perf. 

Validation 
perf. 

Training 
error 

Test 
error 

Validation 
error 

MLP 60-58-1 0.9936 0.9922 0.9940 4.3895 4.9278 4.0127 

MLP 60-19-1 0.9929 0.9918 0.9941 4.8712 5.1533 3.9841 

MLP 60-8-1 0.9933 0.9921 0.9940 4.6041 5.0144 4.0164 

MLP 60-19-1 0.9946 0.9925 0.9941 3.6727 4.7152 3.9253 

MLP 60-11-1 0.9932 0.9921 0.9940 4.6870 5.0090 4.0207 

 
 

Prediction results are shown in the Table (3.14), these results are taken from the 

MLP network 60-58-1 (Tanh-logistic). Correlation coefficient in training data set was 

0.994 and when it was tested over testing period it decreased to 0.988 it kept on 

decreasing while testing over longer times ahead. Another evaluation metrics which was 

applied is standard deviation, for predicted values, standard deviation stayed constant as 

13.218 while for observed ones for t to t+180 as observed in table below it had these 

values successively 13.624, 13.624, 13.625, 13.627, 13.628, 13.630, 13.631 and 13.633. 

Prediction continued till the correlation is higher than 0.85. 

 

 
Table 3.15 Prediction results 

 
T 
(test) 

T+15 T+30 T+60 T+90 T+120 T+150 T+180 

Corr. 
Coeff. 

.988 0.983 0.976 0.958 0.934 0.905 .872 0.836 

MAE 1.09 1.48 1.89 2.75 3.61 4.46 5.26 6.02 

MSE 4.21 5.83 8.20 14.59 22.95 33.21 44.88 57.39 
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Figure 3.5 MSE of the model for the prediction of the influent flow rate 

 

Based on plots below it can be seen that predicted values and observed values are 

highly correlated and it demonstrates that algorithm is highly accurate. The figures below 

are test and validation samples plot of predicted versus observed. 

 

 

 

 

Figure 3.6 Test samples plot of predicted vs. observed 
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Figure 3.7 Validation samples plot of predicted vs. observed 

 

By building 7 MLP prediction models at t + 15 min, t + 30 min, t + 60 min, t + 90 

min, t + 120 min, t + 150 min, and t + 180 min respectively, the influent flow rate can be 

predicted up to 180 minutes ahead. In Figure (3.9) it can be seen that the predicted 

influent flow rate is close to the observed influent flow rate, and the trend for both 

predicted and observed values is same. However, there is a slight lag for the predicted 

values. This lag becomes larger with longer prediction horizon. It can be clearly found in 

Figure (3.10) which predicts the influent flow rate at time t + 180 min ahead. Even 

though the trend is successfully predicted, the response for the prediction model is slow. 
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Figure 3.8 Prediction of the influent flow rate at current time t 

 

 

 

Figure 3.9 Prediction of the influent flow rate at time t + 30 min 
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Figure 3.10 Prediction of the influent flow rate at time t + 180 min 

 

 

 

3.7 Conclusion 

To maintain stable effluent and optimally arrange wastewater boosting pumps, it 

is helpful to know in advance the influent flow rate to the wastewater treatment plant. In 

this chapter, the prediction model of influent flow rate up to 180 min ahead was built 

using rainfall rate, radar reflectivity, and influent flow rate as predict inputs. The influent 

flow rate data were collected at Wastewater Reclamation Facility (WRA), the rainfall rate 

data were recorded by 6 tipping buckets surrounding WRA, and the radar reflectivity data 

were obtained from the radar map through nearby radar station. The data were converted 

to have same frequency by taking the average based on different frequencies.  
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Among four data-mining algorithms used in this paper, Decision trees for 

classification and the MLP neural network for regression performed better than other 

algorithms applied to build the prediction model. It was selected to construct the 

prediction model of influent flow rate for all prediction horizons from t to t + 180 min. 

The results showed that the prediction model predicted the influent flow rate well till t + 

150 min. The predicted influent flow rate was close to the measured influent flow rate, 

and the trend for both predicted and observed values was same. In addition, there was a 

lag between predicted and observed influent flow rate after t + 30 min, and the lag 

became larger with longer time horizons. At t + 180 min, i.e., 3 hours ahead, the 

prediction accuracy metrics indicated that the prediction model performed not well 

enough.  

Prediction of the influent flow rate 150 min ahead might give enough time for 

wastewater treatment plant to arrange operators and schedule pumps. However, the 

prediction accuracy of the prediction model should be improved in future research in 

order to provide long term prediction with acceptable accuracy. In case of heavy rainfall, 

long term prediction will give more time to wastewater treatment plant to make operation 

plans. 
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CHAPTER 4.   PERFORMANCE PREDICTION OF A 
WASTEWATER TREATMENT PLANT 

4.1 Introduction 

If a model is developed based on historical observations of main parameters to 

predict the performance of the plant, there will be a safer operation and easier control of 

the wastewater plant. Wastewater treatment plants consist of chemical, physical and 

biological processes. Neural Networks can work as performance predictors for such 

nonlinear complex processes. To assess the performance, historical data of key 

parameters are applied in the model. For example, biological oxygen demand (BOD), 

suspended solid (SS) and chemical oxygen demand (COD) [40]. Quality of influents are 

deteriorated by wastewaters and plant effluents, hence to increase the potential of water 

reuse, advanced treatment is needed [48]. 

Intelligent methods for prediction of WWTP parameters are widely used in the 

recent decades. Chen, Chang, and Shieh (2003) used a novel approach based on NN 

model to predict nitrogen contents in treated effluents [42]. Total suspended solid (TSS) 

is an indication of plant performance. Belanche, Valde´s, Comas, Roda, and Poch (2000)  

predicted TSS based on Neural Networks [43]. Shetty and Chellam (2003) develop a 

neural network model to predict long term fouling of nanofiltration membranes that are 

used to purify contaminated water supplies [44]. Hamed et al (2004).used NN model to 

predict biological oxygen demand (BOD) and suspended solid (SS) concentrations in 

plant effluent  [39]. Maier, Morgan, and Chow (2004) modeled  alum dosing surface 

waters by NN [46]. Kohonen found that low pH in biological reactor and long solid 

retention time  caused high concentration of BOD and TSS by using the self-organizing 

feature maps to calssify data [49]. In another NN model, parameter selection for entering 

the network resulted that porous media porosity, wastewater temperature and hydraulic 

residence time are the main parameters affecting BOD removal also COD removal was 

highly correlated to BOD removal [50]. 
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One-line training of the neural network model may improve the prediction 

accuracy [47].  Oliveira-Esquerrea [51] used multilayer perceptron (MLP) and 

functional-link neural networks (FLN) and to model and predicts inlet and outlet 

biochemical oxygen demand (BOD) and developed them using linear multivariate 

regression techniques. 

4.2 Plant layout: a case study 

The NN model was applied to Wastewater Reclamation Authority (WRA). The 

models were tested for different configurations of input–output data. Using the results of 

this modeling process, the plant operator will be able to have an assessment of the 

expected plant effluent for a given quality of the wastewater stream at input locations. A 

schematic diagram of the plant is shown in Figure (4.1). 

Main outfall, sewer and fourmile are collected in raw wastewater junction 

chamber then screened for removal of grits. Settled solids are scrapped down in the 

hoppers and carried to paddle mixers. Aerobic bacteria are activated by aeration and 

mixing with activated sludge. After roughing filters process, aeration tanks starts working 

and chlorination system. Rotary Drum Thickeners navigate solid parts to the secondary 

digesters and gas is generated. 

4.3 Data collection 

It was decided to relate the outputs of the treatment effluent stream to the inputs 

of the stream (influent). Therefore, measurements of the carbonaceous biochemical 

oxygen demand (CBOD) and total suspended solid (TSS) in the effluent stream and 

influent stream were collected over period of 1/1/2008 to 12/31/2010, 3 years of data. 

This period was satisfactory as it covers all probable seasonal variations. Parameters in 

the model are introduced in Table (4.1). 
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Figure 4.1 Schematic diagram wastewater processes 

 

 
Table 4.1 Parameters of the model 

Parameter Label Description Unit 
CBOD in  influent plant infl-

CBOD 
Amount of CBOD in influent stream mg/l 

TSS in  influent plant infl-
TSS 

Amount of TSS in influent stream mg/l 

CBOD in  effluent plant efl-
CBOD 

Amount of CBOD in effluent stream mg/l 

TSS in  effluent plant efl-
TSS 

Amount of TSS in effluent stream mg/l 

Total influent to the 
plant 

Infl Amount of total influent to the 
wastewater plant (Building 05) 

GPD 

 

 

The measurements were performed in the plant almost for 3 days a week. CBOD 

and TSS are measured and sent to the laboratory. Based on the data set they usually do 

the sampling on Wednesdays, Thursdays and Fridays but it may change in some weeks 

and sometimes they measure only twice a week even not on successive days, because of 

inconsistency in the method of sampling, frequency of 7 days is supposed for the model 
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and the average is taken for all available values in a week and considered as data set1, 

different data sets are defined for other approaches. Sampling is done over the period 

1/1/2008 to 12/31/2010, hence there are 157 instances with 7 days frequency, first two 

years are used as training data set and the rest which is 1 year is for testing. 

In dataset1, it is supposed that measurements are done weekly so the average of 

three values in each week is calculated and there were 157 data points. In data set 2, it is 

supposed that the measurements are done in a daily manner, so there are 440 data points 

and for the whole sampling interval which is 3 years it is required to have 1095 data 

points, so interpolation is applied to fill 655 missing values and the interpolation is not 

only based on historical data but also based on the amount of the total influent to the 

plant.  

 

 

 

Figure 4.2 Data sequence of CBOD and TSS in influent, time 
unit is week and chemicals’ unit is mg/l 
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Figure 4.3 Data sequence of CBOD and TSS in effluent, 
time unit is week and chemical’s unit is mg/l 

 

The conventions efl-CBOD, efl-TSS, infl-CBOD and infl- TSS hold for CBOD in 

effluent flow, TSS in effluent flow, CBOD in influent flow and TSS in influent flow, 

respectively.  

4.4 Data preparation, preprocessing and statistical analysis 

The CBOD and TSS were selected because they can be used as measures for the 

effectiveness of the wastewater treatment plant. Data refining was done by taking the 

average of 2 or 3 values in each week then excluding the outliers by considering the 

acceptable limit in the plant controlling system and excluding the values which were not 

in the range of U3σ around mean. 

Various manipulations can be applied to decipher data series, in this research data 

series are normalized. The main objective here is to ensure that the statistical distribution 

of the values for each net input and output is roughly uniform. In addition, the values 
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should be scaled to match the range of the input neurons. The data sets are usually scaled 

so that they always fall within a specified range or they are nor

zero mean and unity standard deviation. This is achieved by normalizing the mean and 

standard deviation of the data set.

The preprocessed data set was analyzed statistically by generating a box and 

whiskers plot for each variable.

components; a central line to indicate central tendency or location; a box to indicate 

variability around this central tendency, median and whiskers around the box to indicate 

the range of the variable. This is shown in Figure (4.4)

before any preprocessing. The plots illustrate the extent of outlier density in each variable 

as indicated by the points extending beyond the whiskers. In addition, it shows the range

of each variable and, consequently, the efficiency of the plant treatment.

 

Figure 4.4 Box diagrams for the plant data for effluent and influent streams

 

 

should be scaled to match the range of the input neurons. The data sets are usually scaled 

so that they always fall within a specified range or they are normalized so that they have 

zero mean and unity standard deviation. This is achieved by normalizing the mean and 

standard deviation of the data set. 

The preprocessed data set was analyzed statistically by generating a box and 

whiskers plot for each variable. These plots summarize each variable by three 

components; a central line to indicate central tendency or location; a box to indicate 

variability around this central tendency, median and whiskers around the box to indicate 

variable. This is shown in Figure (4.4), which is derived

before any preprocessing. The plots illustrate the extent of outlier density in each variable 

as indicated by the points extending beyond the whiskers. In addition, it shows the range

of each variable and, consequently, the efficiency of the plant treatment. 

Box diagrams for the plant data for effluent and influent streams
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should be scaled to match the range of the input neurons. The data sets are usually scaled 

malized so that they have 

zero mean and unity standard deviation. This is achieved by normalizing the mean and 

The preprocessed data set was analyzed statistically by generating a box and 

These plots summarize each variable by three 

components; a central line to indicate central tendency or location; a box to indicate 

variability around this central tendency, median and whiskers around the box to indicate 

is derived from raw data 

before any preprocessing. The plots illustrate the extent of outlier density in each variable 

as indicated by the points extending beyond the whiskers. In addition, it shows the range 

 

 
Box diagrams for the plant data for effluent and influent streams 
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4.5 NN modeling; methodology  

The NNs can be categorized in terms of topology such as single and multi-layer 

feedforward networks (FFNN), feedback networks (FBNN), recurrent networks (RNN), 

self-organized networks. In addition, they can be further categorized in terms of 

application, connection type and learning methods. The most commonly used type of 

networks in the field of modeling and prediction is the FFNN. In this topology, the 

network is composed of one input layer, one output layer and a minimum of one hidden 

layer. The term feedforward describes the way in which the output of the FFNN is 

calculated from its input layer-by-layer throughout the network. 

Activation functions for the hidden units are needed to introduce the nonlinearity 

into the network. The Sigmoidal functions, such as logistic and tanh, and the Gaussian 

function, are the most common choices for the activation functions. The neural system 

architecture is defined by the number of neurons and the way in which the neurons are 

interconnected. In this research Gaussian is applied for data set1 because of its most 

promising result. 

The data are normally divided into three subsets; training, validation and testing 

subsets. The training subset data are used to accomplish the network learning and fit the 

network weights by minimizing an appropriate error function. Backpropagation is the 

training technique usually used for this purpose. It refers to the method for computing the 

gradient of the case-wise error function with respect to the weights for a feedforward 

network. The performance of the networks is then compared by evaluating the error 

function using the validation subset data, independently. The testing subset data are then 

used to measure the generalization of the network (i.e. how accurately the network 

predicts targets for inputs that are not in the training set) this is sometimes referred to as 

holdout validation. Training, test and validation ratio which was applied in this research 

is 4:2:1.  



www.manaraa.com

60 

 

 

 

There are many reported techniques to avoid underfitting and overfitting such as 

model selection, jittering, early stopping, weight decay, Bayesian learning, and 

combining networks, in this research different values for weight decay is applied to avoid 

over-fitting. 

 The structure must be optimized to reduce computer processing, achieve good 

performance and avoid overfitting. The selection of the best number of hidden units 

depends on many factors. The size of the training set, amount of noise in the targets, 

complexity of the sought function to be modeled, type of activation functions used and 

the training algorithm all have interacting effects on the sizes of the hidden layers. There 

is no way to determine the best number of hidden units without training several networks 

and estimating the generalization error of each. 

4.5.1 NN vs. regression 

Neural networks extract information from data in the form of predictive input–

output models also they provide a very general framework to approximate any type of 

nonlinearity in the data [52]. 

Regression equations are very useful, but they simplify a complex system, like 

wastewater plants, into a few parameters, and may ignore crucial factors [50].  

NN are used as nonlinear modeling techniques for CBOD and TSS prediction. 

Because neural networks are parallel and have better filtering capacity moreover with 

noisy or incomplete data NN usually perform better than linear models [8]. However, as 

neural networks function known as black boxes, are difficult to interpret and unknown in 

physical insight of data [55], in addition, Multilayer perceptron (MLP) have been 

successfully used in modeling biological wastewater treatment processes [53, 54]. 

 

 



www.manaraa.com

61 

 

 

 

 
Figure 4.5 Schematic of the multi-layer NN 

 

4.6 Results and discussion 

In this section statistical results for each data set are described, then the modeling 

and prediction is presented, finally the results of all sections are compared and the most 

promising one is introduced. 

4.6.1 Data set 1 

4.6.1.1 Statistical analysis 

Correlation coefficient table was a preliminary multivariable statistical analysis 

which was used to explore the degree that a linear model can describe the relation among 

variables. Correlation matrix is used widely to measure correlation or association. It can 

give the idea that which variable is better to use to predict the other on based on a linear 

relation. As shown in Table (4.2), there were some degrees of linear correlation between 

the variables in influent and in the effluent. The weakness of the values in table proves 

that conventional regression techniques in modeling such a complex process will give 

poor results so there is a need to use complex modeling. 
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Table 4.2 Correlation matrix for plant variables 

Correlation Coefficients 
  infl-

CBOD 
infl-TSS efl-

CBOD 
efl-TSS 

infl-CBOD 1 0.193692 -0.12027 -0.16956 
infl-TSS 0.193692 1 0.035442 0.069419 
efl-CBOD -0.12027 0.035442 1 0.476558 
efl-TSS -0.16956 0.069419 0.476558 1 

 

4.6.1.2 Modeling results 

Neural network toolbox in Statistica is utilized for this analysis. The previously 

described neural networks design procedure is applied to model the WWTP. Two NN 

input topologies are considered for the plant modeling, different configurations of input–

output data. There are six different configuration of input-output as can be seen below in 

Table (4.3). 

 In the first approach, each of the influent variables (TSS, CBOD) is used to 

predict each of the effluent variables. In the second approach multi-input variables are 

used to predict the corresponding output variables in the effluent stream.  

 
Table 4.3 Different configurations of input-output 

Model number Input Output 
1 Infl-TSS Efl-CBOD 
2 Infl-CBOD Efl-CBOD 
3 Infl-TSS Efl-TSS 
4 Infl-CBOD Efl-TSS 
5 Infl-TSS, Infl-CBOD Efl-CBOD 
6 Infl-TSS, Infl-CBOD Efl-TSS 

 

To keep the model simple, 1 hidden layer for single input and 1 hidden layer for 

multiple inputs are used. On the other hand, the number of neurons in the hidden layer is 

selected after testing the performance of the networks at different combinations. It is 
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noticed that 40 and sometimes 60 neurons is the least number of neurons, in the hidden 

layer, which converged to a final solution.- for multi-layer. However, for the multi-input 

case the hidden layer contains 40 neurons. 

The constituents of the network layers, i.e. types of neurons, were taken to be 

Gaussian after testing different combinations. MLP was applied to all configurations but 

there was not any promising result. The results below all had RBFT training algorithm 

and error function was sum of squared error, hidden activation is Gaussian and output 

activation is Identity. 

The computational results are shown in Table (4.4). The table indicates the most 

promising networks yielded from automated research in Statistica for each configuration. 

 
Table 4.4 Summary of trained NN results for different 

input-output variable combinations 

Input Output Net. 
name 

Training 
perf. 

Test 
perf. 

Validation 
perf. 

Training 
error 

Test 
error 

Validation 
error 

TSS TSS RBF 
1-40-
1 

61.50 16.71 24.29 5.73 6.45 3.95 

CBOD TSS RBF 
1-60-
1 

64.68 31.32 15.24 5.40 5.86 5.29 

CBOD CBOD RBF 
1-60-
1 

51.38 17.15 25.53 0.01 0.01 0.01 

TSS CBOD RBF 
1-40-
1 

46.64 18.35 39.72 0.01 0.01 0.09 

TSS, 
CBOD 

TSS RBF 
2-40-
1 

58.28 19.96 46.42 6.08 5.66 2.64 

TSS, 
CBOD 

CBOD RBF 
2-40-
1 

21.04 25.60 10.00 0.01 0.00 0.00 
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4.6.2 Data set 2 

In preprocessing step outliers are thrown out based on the limits provided by 

plant; also reinforced by 6sigma principal which was applied before to have an 

acceptable range for all variables in the model; for influent chemicals minimum and 

maximum for CBOD are 20 and 443 mg/l respectively and for TSS 60 and 1260 mg/l 

respectively. On the other hand, in effluent stream minimum and maximum for CBOD 

are 4 and 20 also for TSS 2 and 88 mg/l respectively, these limits for influent rate to the 

plant are 0 and 260 GPD. Time span for sampling is 1/1/2008 to 12/30/2009 whereas 

1/1/2008 to 4/30/2009 is considered for training and 5/1/2009 to 12/30/2009 for testing, 

there are 730 points of daily data with many missing values. Table (4.5) shows different 

configurations of inputs and outputs. 

 

 
Table 4.5 Different configurations of input-output 

Model number Input Output 
1 Infl-TSS, Infl-CBOD,influent Efl-CBOD 
2 Infl-TSS, Infl-CBOD, influent Efl-TSS 

 

 

In data set 2, total influent is added to the model, correlation coefficient among 

total influent and rest of the attributes is shown in Table (4.6). These weak values 

demonstrate feeble linear relationship among new income and old elements of the model. 

 

 
Table 4.6 Correlation coefficient of total influent  

and other attributes of the model 

 inflCBOD infTSS influent eflCBOD eflTSS 
Influent -0.65 0.05 1.00 0.25 0.07 
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Boosted tree algorithm was applied for feature selection, this algorithm is already 

described in previous sections, and the results are explained for CBOD and TSS output. 

As can be seen in the table when the output is TSS, influent TSS and total influent are 

more important than the influent CBOD, and exactly the same for configuration 2. 

 

  
Table 4.7 Boosted tree results in feature selection 

 CBOT out put TSS out put 

Inputs  Variable Rank Importance  Variable Rank Importance 

inflCBOD 100 1.00 100 1.00 

influent 67 0.67 63 0.63 

infTSS 35 0.34 60 0.60 

 

 

Based on the most promising results derived from the other data set, MLPs are 

chosen and trained for this data set. Configuration 1 has the output (Efl CBOD) and best 

MLP networks obtained by Automated search in Statistica for it is shown in Table (4.8). 

Configuration 2 has the output (Efl TSS); the best networks are shown in Table (4.9). 

 

 
Table 4.8 Best MLP networks for configuration 1 

Net. name Test perf. Validation 
perf. 

Test error Validation 
error 

Hidden 
activation 

Output 
activation 

MLP 3-
163-1 0.638295 0.829115 0.433823 4.692967 Exponential Exponential 
RBF 3-50-
1 0.277232 0.501661 0.460141 5.651888 Gaussian Identity 
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Table 4.9

Net. name Test perf. 

MLP 3-
91-1 0.760129 
MLP 3-
17-1 0.750982 
RBF 3-
30-1 0.608495 
 

In Figures (4.6) to (4.9) correlation between predicted values and observed values 

in testing and validation samples 

values do not follow the expected linear relation, that is the reason that data se

defined to see if the error can be decreased by filling the missing values.
 

Figure 4.6 Observed versus predicted values for validation samples

 

 

Table 4.9 Best MLP networks for configuration 2 

Validation 
perf. 

Test error Validation 
error 

Hidden 
activation

0.472630 2.673671 5.606065 Tanh 

0.445657 2.746222 5.067053 Tanh 

0.550173 3.955731 4.131057 Gaussian

In Figures (4.6) to (4.9) correlation between predicted values and observed values 

in testing and validation samples is visualized, as can be seen the observed and predicted 

do not follow the expected linear relation, that is the reason that data se

defined to see if the error can be decreased by filling the missing values. 

Observed versus predicted values for validation samples
- configuration 1 

66 

Hidden 
activation 

Output 
activation 

Exponential 

Logistic 

Gaussian Identity 

In Figures (4.6) to (4.9) correlation between predicted values and observed values 

observed and predicted 

do not follow the expected linear relation, that is the reason that data set 3 is 

 

 

Observed versus predicted values for validation samples 
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Figure 4.7 Observed versus predicted values for test samples 

 

 

Figure 4.8 Observed versus predicted values for test samples 

 

 

7 Observed versus predicted values for test samples 
– configuration 1 

8 Observed versus predicted values for test samples 
configuration 2 
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7 Observed versus predicted values for test samples  

 

8 Observed versus predicted values for test samples –  
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Figure 4.9 Observed versus predicted values for validation samples 

 

 

4.6.3 Data set 3

The other approach is to interpolate the missing values in CBOD and TSS 

on historical data and total influent to the plant (dataset3), which will change frequency 

of the data from 7 days to 1 day and more data points for the interval of  2 years (2008 

and 2009). 

After statistical analysis and modeling of this data set, 

data will be compared to the results of daily and 

one is more promising and yields better result.

Interpolation is applied to fill 655 missing values and the interpolation is not only 

based on historical data but also based on the amount of the total influent to the plant, 

other sections like feature and algorithm selection, sampling interval is the same as data 

set2.To fill the missing values, these equations are calculated and applied:

 

9 Observed versus predicted values for validation samples 
configuration 2 

Data set 3 

The other approach is to interpolate the missing values in CBOD and TSS 

on historical data and total influent to the plant (dataset3), which will change frequency 

of the data from 7 days to 1 day and more data points for the interval of  2 years (2008 

After statistical analysis and modeling of this data set, the results of the weekly 

data will be compared to the results of daily and interpolated daily data to find out which 

one is more promising and yields better result.  

Interpolation is applied to fill 655 missing values and the interpolation is not only 

d on historical data but also based on the amount of the total influent to the plant, 

other sections like feature and algorithm selection, sampling interval is the same as data 

set2.To fill the missing values, these equations are calculated and applied:
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9 Observed versus predicted values for validation samples –  

The other approach is to interpolate the missing values in CBOD and TSS based 

on historical data and total influent to the plant (dataset3), which will change frequency 

of the data from 7 days to 1 day and more data points for the interval of  2 years (2008 

he results of the weekly 

data to find out which 

Interpolation is applied to fill 655 missing values and the interpolation is not only 

d on historical data but also based on the amount of the total influent to the plant, 

other sections like feature and algorithm selection, sampling interval is the same as data 

set2.To fill the missing values, these equations are calculated and applied: 
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• InflCBOD (Y1) based on total influent (x), Y1=f(x0) 

• InflTSS (Y2) based on total influent (x), Y2=f(x0) 

• EflCBOD (Y3) based on inflCBOD (x1), Y3=f(x1) 

• EflTSS (Y4) based on inflTSS (x2), Y4=f(x2) 

To formulate CBOD in influent based on the total influent rate, time series of 

input and output of the model were applied in software Eureqa and equation for 

interpolation was produced shown in equation (4.1). Equation (4.2) is the formulation of 

TSS in influent based on total influent rate to the wastewater plant. Eureqa (pronounced 

"eureka") is a software tool for detecting equations and hidden mathematical relationships 

in data. Its primary goal is to identify the simplest mathematical formulas which could 

describe the underlying mechanisms that produced the data. The chosen equations have 

the least value for fitness function, most correlation coefficient, least linear residual and 

least mean and absolute errors. 

 

Y1= ��W0	 
 299.15387 4  21.633059 ^ sin � 376.6543 W0& 	 � 11.803284 ^
sin�0.83268148 ^ x0	  � W0 (4.1) 

 
Y2= ��W0	 
 283.78384 � 42.428005 ^ sin�0.15061 ^ x0 �  4.8503766	  �

283.78384 �0.061204407 ^ W0	& (4.2) 

 
 

Formulation of chemicals in effluent is as below, when TSS in effluent was 

considered as output, first total influent was applied as variable in function but the results 

were not that promising, hence TSS amount in effluent in missing points was calculated 

based on the TSS in inflent, and the equation which was searched in Eureqa software is 

as below equation ( 4.4), the chosen one has the least fitness, most correlation coefficient, 

least linear residual and least mean and absolute errors.  

 

Y3= ��W1	 
 4.1960101 4  cos�2331550.3 4 34.808167 W1&  	(4.3) 
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Y4= 
��W2	 
 4.2334962 4   E�� �0.04909274 ^ W2 �  2.6754057	   4   ��344.07095 4
 344.07095 ^ E�� �0.090452246 ^ W2 �  3.7199678	   �  W2 ^ E�� �0.090452246 ^

W2 �  3.7199678	 		 ⁄ W2(4.4) 

Genetic Algorithm approach was applied to interpolate the missing values in TSS-

infl, CBOD-infl, TSS-efl and CBOD-efl. Population size for all of them was 512 the rest 

of the evaluation metrics to generate the final equation are shown in the tables and figures 

below successively for each output. 
 

 

Table 4.10 Evaluation metrics of GA  
approach for TSS in influent 

Index Train Validation 
Sample size 306 161 
Fitness 0.85 0.85 
R-squared 0.07 0 
Correlation 
coefficient 0.35 0.38 
AIC 2525.45 1351.57 
MSE 3441.08 3079.35 
MAE 49.47 46.43 

 

Table 4.11 Evaluation metrics of GA  
approach for CBOD in influent 

Index Train Validation 
Sample size 288 150 
Fitness 0.86 0.89 
R-squared 0.04 0.01 
Correlation 
coefficient 0.36 0.32 
AIC 2384.71 1272.28 
MSE 3433.67 3696.73 
MAE 44.61 46.7 
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Table 4.12 Evaluation metrics of GA 
 approach for TSS in effluent 

Index Train Validation 
Sample size  306  161 
Fitness 0.79 0.68 
R-squared 0.04 0.25 
Correlation 
coefficient 0.33 0.52 
AIC 378.06 148.13 
MSE 3.29 2.22 
MAE 1.28 1.09 

 

 

 

Table 4.13 Evaluation metrics of GA  
approach for CBOD in effluent 

 Index Train Validation 
Sample size 707 380 
Fitness 0.91 0.92 
R-squared -0.06 -0.08 
Correlation 
coefficient 0.21 0.18 
AIC -2946.17 -1565.85 
MSE 0.01 0.01 
MAE 0.1 0.1 

 

 

The figures below consist of 4 parts (a) to (d), for all the Figures (4.10) to (4.13), 

part (a) shows “Observed vs. predicted plot”. Part (b) shows “Residual error histogram 

plot”. Part (c) shows “Accuracy vs. complexity plot of the best solutions”. Part (d) shows 

“The best solution error over the search time”. 
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Figure 4.10 GA approach for interpolation of TSS in influent based on 
total influent values 
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Figure 4.11 GA approach for interpolati
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Figure 4.12 GA approach for interpolation of TSS in effluent
based on TSS in influent 
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approach for interpolation of TSS in effluent 
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Figure 4.13 GA approach for in

 

 

4.13 GA approach for interpolation of CBOD in effluent
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4.6.3.1 Interpolated points in influent 

In this section interpolated points and available values are visualized in plots, red 

dots show interpolated while blue line is for available data.  

 

 

 

Figure 4.14 Plot of times series of available values and interpolated 
data for TSS in influent. 

 

 

Figure 4.15 Plot of times series of available values and interpolated 
data for CBOD in influent. 
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Figure 4.16 Plot of times series of available values and interpolated 
data for TSS in effluent. 

 

 

 

 

Figure 4.17 Plot of times series of available values and interpolated 
data for CBOD in effluent. 

  

 

Two best networks are shown in Tables (4.10) and (4.11) and respectively for 

configuration 1 (output was CBOD in effluent) and configuration 2 (output was TSS in 

effluent); the results are based on the automated search in Statistica. 
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Table 4.14 Best MLPs for configuration 1 

Net. name Test perf. Validation 
perf. 

Test error Validation 
error 

Hidden 
activation 

Output 
activation 

MLP 3-
58-1 28.55 30.90 0.1767 0.8422 Exponential Identity 
MLP 3-6-
1 32.65 32.61 0.1716 0.9922 Exponential Identity 
 

 

Table 4.15 Best MLPs for configuration 2 

Net. name Test perf. Validation 
perf. 

Test error Validation 
error 

Hidden 
activation 

Output 
activation 

MLP 3-
68-1 36.90 19.37 2.4710 8.653 Logistic Identity 
MLP 3-
67-1 32.91 18.62 2.544 8.649 Exponential Tanh 
 

 

4.7 Conclusion 

Modeling a wastewater plant is difficult to accomplish due to high level of 

complexity and nonlinearity of the plant and non-uniformity of the available data as well 

as the nature of the biological treatment. An NN modeling approach was implemented to 

solve the problem and discover the relation of input-output to be able to predict the 

behavior of the plant performance. It really involves a great degree of complexity and 

uncertainty. When CBOD was defined as output the result was so poor because of lab 

manipulation whereas using TSS as output yielded better results. Error was so low when 

using CBOD as output, the reason was that the mode and median value for CBOD was 4 

mg/l and the algorithm could predict it very well since it was majority. 
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NN modeling technique has many advantages in modeling complex systems, 

simplicity, efficiency and generalization which was so useful in modeling a wastewater 

plant performance prediction model. 

The other approach was to interpolate the missing values in CBOD and TSS 

based on historical data and total influent to the plant, which will increase frequency of 

the data from 7 days to 1 day and more data points for the interval of 3 years. 

In this section the results of the weekly data will be compared to the results of 

daily interpolated data to find out which one is more promising and yields better result. 

Comparison of Network results for weekly data (data set1), daily data with missing 

values besides total influent (data set2) and filled daily data (data set3) are compared for 

two configurations mentioned before. The computational results are demonstrated in 

Tables (4.12) and (4.13). 

 

 

 
Table 4.16 Compared networks for three defined datasets for TSS concentration 
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1 TSS, CBOD TSS 
RBF 2-
40-1 

19.96 46.42 5.66 2.64 Weekly No-averaged 

2 
Tss, CBOD, 
tot inflent 

TSS 
RBF 3-
60-1 

49.87 53.29 7.10 7.42 Daily Yes 

3 
Tss, CBOD, 
tot inflent 

TSS 
MLP 
3-68-1 

36.9 19.37 2.47 8.65 Daily 
No-
interpolated 
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Table 4.17 Compared networks for three defined datasets for CBOD concentration 
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1 
TSS, CBOD CBOD 

RBF 2-
40-1 

25.6 10 Weekly No-averaged 

2 
Tss, CBOD, tot 
inflent CBOD 

RBF 3-
50-1 27.72 50.16 Daily Yes 

3 
Tss, CBOD, tot 
inflent CBOD 

MLP 3-6-
1 

32.65 32.61 Daily 
No-
interpolated 

 

 

 

4.8 Discussion 

Nonlinear interpolation (curve fitting with noisy data) is not that meaningful 

while we ignore some crucial questions about data set and make some assumptions like 

data can be assumed to be continuous, smooth, possibly periodic, so it is subject to 

uncertainty. 

It is suggested to model daily regular measurements for CBOD and TSS without 

laboratory filtering to be able to measure performance more accurately. 
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CHAPTER 5.   CONCLUSION 

This Thesis explores some practical applications of data mining techniques and 

heuristic search methods by using concepts in hydrology in the field of Wastewater Plant 

Process.  Data sets considered for study included water quality parameters, influent rate, 

radar reflectivity, and tipping bucket.  Statistical analysis, in particular correlation-based 

analysis, was used for the selection of input parameters for the modeling challenges 

tackles throughout this work.   

Chapter 1 provided background information and a literature review of past 

applications of data mining in hydrology, as well as an introduction to the multilayer 

perceptron (MLP), decision tree (DT) which was extensively applied throughout this 

Thesis.   

The Second Chapter proved data mining and the DTs competence at making a 

prediction at a different spatial location.  In this data driven model, rainfall at a 

downstream location was predicted with reflectivity, velocity and spectrum width data 

from other tipping bucket locations, as well as the rainfall data from all other tipping 

buckets in surrounding area.  Rainfall is a particularly difficult water quantity parameter 

to predict due to its erratic and fluctuating behavior and its tendency to zero value which 

caused class imbalance problem and erroneous recording in rain gauges.  The DT model 

derived in this chapter makes a rainfall prediction at a gauge up to 120 minutes with 

accuracy of 94.21 %. The model’s robustness is analyzed as it is tested outside of its 

training domain, at six other locations along the wastewater plant.  The results show that 

the model is highly robust.  The radius that model could maintain while tested on other 

rain gauges was 33.13 km with the accuracy above 95%. 

Chapter 3 combines tipping bucket data and Next Generation Radar data to build 

a predictive model of the total influent rate to the wastewater plant, by way of MLP and 
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also DT.  For classification model prediction could be done up to 1 hour successfully and 

for regression model accuracy decrease to about 86 % up to 3 hours. 

Chapter 4 considered multiple water quality parameters, and provided a 

methodology toward a very practical use of data mining; data gap filling.  One method 

for filling missing data was presented, called non-linear interpolation, considered 

complimentary water quality parameters, to predict carbonaceous biochemical oxygen 

demand and total suspended solids in influent rate.  The other water quality parameters in 

effluent were measured concurrently with influent concentrations.  This method may be 

useful at a location that missing values do not outnumber available values. The 

methodology introduced utilizes time series data mining, or the use of historical data.  

The method was used to model the current CBOD, TSS concentrations in influent, and 

also to make a short term forecast.  The behavior of the model is analyzed when making 

longer term forecast, as well. The steps in chapter 1 to 4 are summarized in Figure (5.1); 

the flowchart demonstrates the main goal of this Thesis and shows the relation of each 

forecast model to the other one. 

Future research will focus primarily on using radar data in other predictive 

models.  Upon research there appeared to be many other areas for analysis and model 

improvement, like using reflectivity in solar energy predictive model in solar plant.  Also, 

the apparent usefulness of such high spatiotemporal resolution precipitation data to 

hydrological models, namely, flood forecasting models, makes this an exciting area of 

research.  Some other topics that will be studied in the future are; further robustness 

testing, such as testing the rainfall prediction models’ performance in other regions 

farther away with different terrain properties, and the rainfall prediction models’ 

dependency on nearby actual tipping buckets for accurate longer predictions. Also more 

accurate method to fill the missing values of flow rate chemicals. 

 In Figure (5.1) whole process of this thesis is demonstrates in the flow chart. 
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Figure 5.1 Thesis summary 
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