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ABSTRACT

Wastewater treatment plants (WWTP) involve several complexsiqdly
biological and chemical processes. Often these processes exhititgarmbehavior that
is difficult to describe by classical mathematical modeddeiSoperation and control of a
WWTP can be achieved by developing a modeling tool for predictingpthet
performance.

In the last decade, many studies were realized in wastetsadément based on
intelligent methods which are related to modeling WWTP. Thesdiestuare about
predictions of WWTP parameters, process control of WWTP, estigndd WTP output
parameters characteristics. In many studies, neural networksnedes used to model
chemical and physical attributes in the flow rate.

In this Thesis, a data-driven approach for analyzing water quslitytroduced.
Improvements in the data collection of information system alloiecidn of large
volumes of data. Although improvements in data collection systems Qmen
researchers sufficient information about various systems, they bwisused in
conjunction with novel data-mining algorithms to build models and recogaizerns in
large data sets. Since the mid 1990’s, data mining has beessutigaused for model

extraction and describing various phenomena of interest.
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CHAPTER 1. INTRODUCTION

The availability of quality water is a concern, and human-enviesmm
interactions still leave much to be understood. Knowledge about watepdrg, quality,
and quantity awaits further discovery. Water quality has higlaneei from location to
location and time to time, due to its sensitivity to both chem{siy nutrient loading),
and transport (i.e. stream flow). Both human activity such aspiplecation of fertilizers
and land management practices, and meteorology play a strong role in watgr quali

Accurate water quality prediction would provide us with a betteetstdnding of
the human influence on aquatic life and provide knowledge for intelligensialec
making in regards to ecological conservation.

The main advantage of applying data driven techniques is thatdnegliminate
some of sources of errors (human sources’ errors or machiness)doecause they do
not require a strong physical understanding of the system to bdedo®ata is used
directly for model building, not for validation of a theoretical physical concept.

Chapter 2 presents the application of data mining techniques for prgdict
rainfall around the Wastewater Reclamation Authority (WRA). Batlar and rain gauge
data are used in constructing prediction models. Model accurastimsated using the
data from the rain gauges. The models are generated by fivenahatg algorithms with
the decision tree algorithm produced the highest accuracy predictions.

Chapter 3 presents the application of data-mining techniques foratiietpn of
total influent of a wastewater treatment plant. Early preghicof total influent will
ensure planned and smooth operation of the plant. The author exploresdatalar
(reflectivity at four different heights, rain gauge data anerefiinfluent prediction at
three different time stamps in the future. Maximum predictiogtle being 180 minutes.

Six data mining algorithms namely Naive Bayes, k-nearegihber, support vector
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machine, logistic regression, neural networks, and decision geetlains are employed
to build prediction models. Models built using decision tree algorityieided the better
prediction results. In addition, sensitivity analysis of the proposedemis done by
varying the bin size of total influent. Then regression analyasdone with a NN model
and maximum prediction length as 3 hours.

In chapter 4 a neural network model for performance optimizatiora of
wastewater treatment plant is presented. The model allowsifimization of operation
costs and assessment of the environmental balance (i.e. balancedatdigemoval in
flow rate of a wastewater plant). Neural networks provide efegredictive models for
complex processes that are poorly described by the first plenenodels. The
wastewater biological phenomena in wastewater treatmensdihin such category.
The neural network model is developed using the data from theeWé&sr Reclamation
Authority (WRA) located in Des Moines, lowa. The model predibts ¢arbonaceous
biological oxygen demand (CBOD) and the total suspended solids (T &%) effluent
stream.

1.1 Radar-based modeling approaches in water quality

With the recent deployment of in situ instrumentation in rivengasts, and
creeks nationwide, as well as real-time data reporting atellise communication
technology, a wealth of data is available that had never befdhe ipast. Data mining
can utilize this vast base of data for pattern recognition arathinelearning, so as to
make accurate predictions.

1.2 Data-driven modeling approaches in water quality

Data mining makes models from the “ground up” rather than usingati¢ional
top-down approach of its physics-based counterpart. As dataxdneeels are derived
directly from the data, their accuracy is unparalleled by physics-baseslsnod

In order to achieve high accuracy water quantity estimation, Ipigtiosemporal

resolution precipitation data is highly desirable. There have béew afforts to utilize
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data-driven modeling for precipitation estimation via NEXRAMaradata. There have
been fewer attempts to make this link between radar data andgtibppcket data with
data-driven techniques. Feed forward neural network (FFNN) hapleead for rainfall
estimation using radar reflectivity and rain gauge data [1,2falis et al considered
some different parameters, such as wind speed and bandwidth to contplefheetivity,
but with unimproved results. The best performing models in the stulgIMSE’s less
than 0.1mm/hr [3]. In this study, chapter 2, different parameteis asicvelocity and
spectrum width are considered besides reflectivity to makeaiafall predictive
classification model but with unimproved results again.
1.3 The multilayer perceptron (MLP)

As the algorithm used throughout this Thesis is the multilayeepton (MLP),
otherwise known as neural network (NN) or artificial neural netW/ANN), an in depth
algorithm description is justified. It has found widespread sudoesgny areas other
than hydrology due to its ability to model noisy data and usefulness for bothictassif
and regression. This section should provide insight to one of the maehimeng
algorithms that has been so widely labeled a “black box” model.

1.3.1 MLP overview

The MLPs applied in this research are feed forward backwardlyageting
neural networks. The MLP’s structure consists of nodes in an inper, la hidden
layer(s), and an output layer. The concept was biologically esgo represent the
human brain’s ability to process in parallel, to learn from erpeg, and to be highly
connective and modifiable. The brain also operates via superviseddépamnthe ability
to train itself and learn from past experiences. The brainthesbility both to feed
connections forward, near sensory input, and feed connections backwardsensory
input. These connections are mimicked by the NN with the use of. |dégsd forward

NNs do not have loops, while in a looping, or recurrent NN, informatitedi®ack from
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an output node to an input no(4-5]. In both categories of NNs, each input/out
parameter is assigned a node in its respective/oydpu layer.

1.3.2 The MLP structure and algorithm

Figure 1.1 is a diagram of a single perceptron \wo input, and a simple
binary output. The inputs are multiplied by thegspective weights and the products
summed at the junction. If the sum at the junct®greater than the threshol@)( the
perceptron “fires.” In the binary example, fg means outputting a “1.” Equation (1

describes the summation that occurs at the n

Ou[pu\//\\_
AEER.

//—\
Thresho\d( )
\\-_'_/,

" Q

0 0
o~ [

Figure 1.1 Perceptron

(1.1)
Wherey; is the output of thj™ node mis the number of inputs to tf" node x is
the input valuew is the input weight, anb is a bias factor.
After each element in the data set, the weightshfelinputs are updated, basec
error. If the target value was achieved, the wisighmain unchanged. Equaticl.2)
describes howhie neural network updates ™ weight in theé™ layer.

(1.2)
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Where is the learnincrate, is the error attributed to the node af is the
activation function.

It is this recalculating of the weights that alloti®® neurd network to “learn” ¢
dataset.Stopping criteria is user defined, usually by limgt the number of epochs,
cycles through theata set, the model contin. The original perceptron was develog
by Rosenblatt (1958) in at the Cornell Aeronau Laboratory but the observation w
made that the single layer perceptron was onlyllapaf learning when the data set v
linearly separable such as modeling the XOR g [6]. However, after furthe
devdopment, multiple perceptrons w: placed in lagrs (see figure 1.2), and the sim
stepwise activation function was replaced with aticmous and differentiable sigmoic
one, so thatts outputs could be continuo The resulting structure of the percept
when put into layers, can be seen belo the Figure (1.2Wwhich is an MLP schemat
with two hidden layers and 15 noc An example of the new sigmoidal activati

function for continuous MLPs, in this case the &tigi function, is show in equaticl.3.
—(1.3)

[ Input Layer ] [ Hidden Layer 1 ] [ Hidden Layer 2 ] [ Output Layer ]

Figure 1.2 Multilayer perceptron
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The optimal structure of a NN still remains a trial-ana»eprocess, but there are
several rules of thumb that previous researchers have found useful.ex&mple,
Tarassenko (1998) states that the number of samples in thiagraet should be greater
than the number of synaptic weights in the network, and according diot-Neslsen
(1987) the number of hidden nodé4, in a single hidden layer model NN is betwéen
and 2 +1, wherel is the number of input nodes [7-8]. Data-mining software, such as
Statistica or WEKA can be a useful tool for testing multiple NN structioréad optimal
results [9].

1.4 Decision tree

Another algorithm used throughout this Thesis is Decision treessiDedree is
about classification. A decision tree partitions its input spaderanches, that will be
partitioned repetitively based on the other attributes in the model.

Any node t is splitting based on a criteria called Entropytiown in equation
(1.4), where Pis the probability of class i within node t. Attribute and sgdiection is to
minimize entropy. After node splitting, two or more descendants are prodtrteapy is
measured for each child and the sum of it is weighted by itepi&ge of the parent’s
cases in computing the final weighted entropy used to decide the best split [10].

Entropy(t) = X, —Pi x log Pi(1.4)
Given a node t, the splitting criterion used is the Gain Ratio in equation (1.5).
GainRatio = gain(t) / splitinformation(t) (1.5)

This ratio expresses the proportion of information generated byitattsgdl is
helpful for developing the classification, and may be thought of a®renalized
information gain or entropy measure for the test. A test ectea that maximizes this

ratio, as long as the numerator (the information gain) is faigen the average gain
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across all tests. The numerator in this ratio is the standantnafion entropy difference
achieved at node t, expressed as in equation (1.6) and the elemerdtiorefiu7) and
(1.8)

gain(t) = info(T) — info.(T)(1.6)

, Where

info(T) = —Xi, Ci/CT(1.7)
info,(T) = Sy /g X info(T)(1.8)
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CHAPTER 2. PRECIPITATION ESTIMATION WITH DATA DRIVEN
MODELING

2.1 Introduction

The connection between radar data and tipping bucket precipitation has bee
topic of interest in the hydrological and meteorological commuoit a decade and is
motivated by the necessity for higher resolution precipitationhfarological model
input. In this Thesis, a series of algorithms are trained wittt generation radar
(NEXRAD) and rain gauge data for precipitation estimation at West\D®nes, IA. The
resulting DTs have overall accuracy 95.9 %. The vision of the aighordevelop this
model, which links rain gauge and radar data, to find the radiascofacy of the model
at various locations of rain gauges that benefit from the agcwfphysical tipping
bucket rain gauges, and the spatiotemporal resolution of NEXRAEnsyechnology.
The system of rainfall predictors at various tipping buckets baa developed to serve
as input to the Wastewater Reclamation Authority (WRA).

The high spatiotemporal resolution of next generation radar (NEXR#dXes it
a useful instrument for precipitation estimation. NEXRAD-latal are the three
meteorological base data quantities: reflectivity, mean Iraddocity and spectrum
width. NEXRAD-III data are derived from various algorithms poocessing NEXRAD-
Il data to produce numerous meteorological analysis products, sustbras velocity,
one hour precipitation total, storm total precipitation, digital medoog detection,
digital precipitation array, wind profiles, and vertical integrated liquid coridrt

Radar data has sources of error which could be mitigated bwithef a
secondary system, such as a rain gauge. Blockage by mountainsllgntbrrain,
confusion with flocks of birds and swarms of insects, and signaiuztien are all
problematic to radar observations. Rain gauges measure rathestimaate precipitation
and are thus deemed as the most truthful account of rainfall aeaildbWwever, rain

gauges provide mere point measurements, and their values mafebentliirom those at
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another gauge only a few kilometers away. It is common, eslyedaling the
convective season when the atmosphere is often unstable, for very high precipatieis
to be measured at one location, and none at another. Should the two teeknoég
melded together, that is NEXRAD and tipping bucket rain gauge, rieg#ts of both
systems could be utilized.

The aim of this chapter is to use NEXRAD-II reflectivity,lo@ty, spectrum
width data from a weather station in Des Moines, IA and netebsleven rain gauges at
the Wastewater Reclamation Authority (WRA) plant located & Moines, lowa by a
flow monitoring program to train 5 algorithms namely decisione$réDT), K Nearest
Neighbors (K-NN), Naive Bayes (NB), Multilayer PerceptroMdLP) and Linear
Regression (LR) for precipitation estimation at a rain gangBes Moines, IA. The
resulting model is verification that rainfall in those locatiéwifows reflectivity so these
inputs can be used then for the flow rate prediction model in the amaxtter. The
National Oceanic and Atmospheric Association’s (NOAA) uses lgoritnm for
converting reflectivity data to hourly precipitation, a NEXRADproduct. This model
could then be used to provide the WRA plant with rainfall data of a rutely
observation frequency and a spatial resolution of 1 @uarrently, the WRA uses seven
tipping buckets within the ~250 Krbasin that report rain rates at 15 minute intervals.

There are different approaches to forecast prediction, for erathgl algorithms
for rainfall estimation were classified into physics-lmhsend statistical/engineering
approaches by Chandrasekar [12-13]; radar-derived rainfall prokketsieasurements
in reflectivity factor in real-time are used to predict gnecipitation; it is transformed
into rainfall accumulations and incorporates rain gauge datanpyove the radar
estimates.

In the early 1980s at the Hydrologic Research Laboratory by exgaéries of
procedures precipitation algorithm was built to estimate raiafadl over time it was

developed, and tested [14]. The lowest four elevation angles, 0.58, 1.58, 2.48, and 3.48
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for reflectivity are used by the algorithm. Radar estiommhas some sources of error
which are often hard to quantify [14], while some studies focused onti@dwt these
errors.

Satellite precipitation algorithm is another approach to genargkespatial and
temporal resolutions rainfall estimates by combining the &ata Tropical Rainfall
Measuring Mission (TRMM) Precipitation Radar (PR) and multijpé Geostationary
Operational Environmental Stellite (GOES) imagery. They cquietict 30 minutes
rainfall estimate by matching PR measurements with four-z@&S image data to to
make a data set and train it in neural network [15]. Other datengntechniques like
Hybrid or joint PCA are applied in precipitation estimate approaches [3].

In most of these approaches, reflectivity is used to make an bidelInfior the
prediction, while the WSR-88D records digital database contains tiaive variables:
velocity, reflectivity, and spectrum width. These additional radaiabkes at multiple
elevation angles and multiple bins in the horizontal can be usegrémipitation
prediction. Linear regression models besides feed forward NNs eddarsprecipitation
prediction. New models which contained other radar products were not significandy m
accurate than reflectivity alone.

The most commonly used technique of radar-based rainfall estméti a
function between reflectivity (Z) and rain intensity (R) which shawe capability of
weather radars to measure rainfall rate using thatoektip between radar echo power
and rain intensity. A volume is sampled and drop size distributiolemified then Z and
R are different moments of that distribution [16]. The most common form of Z aad R ¢
be related as follows in equation (2.1) where a and b are empirically estifh@j.

Following the data mining approach in weather data forecastirffiprest
algorithms are built and compared the accuracy and chose the outpegfame to be
able to forecast length of short term prediction for precipitafl8]. To do the

classification, output has been discretized then encountered clasgamee so synthetic
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over sampling techniques has been used. Synthetic Minority Over-sgni@chnique
(SMOTE) is an over sampling method; it interpolates between swomerity-class
examples to form new minority class examples that lie togefiers it is avoided to
over-fit and the decision boundaries spread farther for the miraai$g in to the space
of majority class [19].
2.2 Radar precipitation estimation (Z-R conversion)
The most common conversion (Z-R) of reflectivity to precipitatide takes the

following relationship:
Z=a-RP (2.1)

WhereZ is the reflectivity,R is the precipitation rate, aralandb are constants
from empirical studies (calibration). Typically, the values usedafandb are 200 and
1.6 respectively.

2.3 Data Acquisition

Two types of data were collected for the building of algong in this study, (1)
radar reflectivity data and (2) tipping bucket precipitation .datdnough other work has
considered using reflectivity bandwidth and horizontal wind velo@®41] in their
models, their experimental results conclude that reflectivithgsonly useful input while
in this study NEXRAD-II reflectivity, velocity, spectrum width date aised.

2.3.1 Doppler WSR-88D Radar

The National Weather Service’s (NWS) Next Generation RaN&XRAD)
system is comprised of 137 radar sites in the contiguous Unitegs Séaich of with is
equipped with Doppler WSR-88D radar capable of reporting high resolutianadalt
making a full 360 degree scan every 5 minutes, with has a rar@30km and a spatial
resolution of about 1km by 1km (Baer, 1991). The weather station used stutlisis
located in Des Moines, IA (KDMX), which is approximately 32 kam from the tipping

bucket locations. Reflectivity and base velocity and base speetidtin were collected
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from four elevation angles (tilts) of the antenna the lowdst dngle 0.5° then 1.45° and
2.40° finally 3.35°. As both the intensity and angle of the reflagtkalues are required
to describe the shape of the approaching storm, it is necdssarpvide data from

multiple angles [22]. This is also consistent with the literature [23-24].

-
Map Options > |

Figure 2.1 Hydro NEXRAD image of KDMX radar coverage

Precipitation is detected by the radar earlier than the gauge. So, the rain
gauge data has been shifted on the time axis to synchronize the attributes in the mode
The rain gauge sites make part of the WRA. Each instrumesqumpped with

dual buckets for quality checking purposes and redundancy. It recordgsitptemi rate

in 0.0001 inches/day, every 15 minutes.
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ki

Figure 2.2 NEXRAD reflectivity raster with WRA (Des Moines)
and lowa City and Amana superimposd

Figure (2.3)shows the location of trseven tipping bucketsut of the 86 statior
and the location of the plant its in the WRA basirand the radar grid superimpos

each cell is equivalent to 1 KM. Figu(2.3)is derived from the reflectivity me

. 41.66
41.64
* 41.62
i o 416
41.58
41.56
41.54
41.52
¢ — 415
+ Tipping bucket @ WEA 4148

938 -93.75 937 -93.65 936 -93.55 935
Longitude

Latitude
*
o

Figure 2.3Location of the rain gauges surrounding the plar

In Table (2.1) the latitude and longitude of eapbpihg bucket is shown. It gives a bet
understanding of how distant they are from onelamnthen how correlated they can
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Table 2.1 Lat-long of rain gauges

Site Name Lat Long
TB1 41.62 -93.55
TB2 41.60 -93.60
TB3 41.56 -93.70
TB4 41.61 -93.78
TB5 41.50 -93.67
TB6 41.60 -93.52
TB7 41.6 -93.70
Plant 41.57 -93.55

14

In the Figure (2.4), it can be seen that the amount of rainfaisvgreatly in each

tipping bucket. That is why one model is made based on the TB2 stiianand is

examined to see how accurate it will perform on other locatdmte getting far from

the TB2 station i.e. testing it on the other tipping bucketsntb the radius of accepted

accuracy for the prediction. In Figure (2.4), the X axis standsnf@ in which each unit

is 5 minutes, and the Y axis shows the inches of precipitation.

Amount of rainfall
<} o o
P ? b

o
[

Tipping bucket location

No. of data points (5 rmin)

Figure 2.4 Rain gauge precipitation data in all 7 stations
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2.4 Preprocessing

Preprocessing data is a crucial step of the data mininggsoOutliers, missing
data and unreliable or low quality data all need to be considefeckbenalysis. The
NEXRAD data was ordered from the hydro NEXRAD site and downbtbatke an FTP
connection. A script was written in Matlab to select the ctoggsl points that
corresponded with the WRA tipping bucket location. Nine grid points welected
about the tipping bucket location, in agreement with Liu, Chandraseici{a (2001)
[25]. This is to provide some margin for error in the GPS mappinigeofipping buckets
and gridding of the KDMX radar raster map. Also, rain doesfaibstraight down but
may be advected horizontally. Finally, The NEXRAD data wallected at 5-min
intervals, which is inconsistent with the temporal resolution of tihping bucket,
reported every 15-min. In order to make the output data suitableini@-series
classification, the input data recorded by the different systergs radar and influent

data are time stamped at 5 min intervals. In general, the following procedsemes are

used.
o Rain gauge data (15 min) is converted into high frequency data (3wnin)
taking the average of the corresponding neighborhood time stamp data, i.e.,
Xy = (Xota-1 + Xold+1)/2 2.2)

In equation (2.2), Xw is the new data point to be inserted, whereag,;>and
Xoig+1 are high frequency neighborhood data points, so this issue was sieglywith
linear interpolating missing tipping bucket data observations.

o The continuous tipping bucket data is discretized into different output
class of varying bin size. A description of influent range for oeffié bin size is shown in
Table (2.2).

The time series considered was from 7/1/09, 6:30 AM to 10/24/09, 11.55 PM and
was formatted to 5-min resolution, for a total of 32,734 data points. d3teof the

description is shown in Table (2.4).
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Table 2.2 Discretization of the output data

No. of bins Total influent thresholds

2 1.0
2.(0 - inf]

3 1.(-inf-0.0025]
2.(0.0025-0.0175]
3. (0.0175- inf]

4 1. (-inf-0.0025]

2. (0.0025-0.0125]
3. (0.0125-0.0325]
4. (0.0325-inf)

Table (2.3) shows the parameters of the model. The first colurhe fsilt name
and the second column is the label we used in model construction, thearta s
description and finally the unit. Overall there are 50 attributeslwbontains memory
parameters for 5, 30, 60 and 90 minutes before real time for radaartthtarget tipping

bucket.

2.4.1 Class imbalance

There may be two kinds of imbalances in a data set. Ormetiseen-class
imbalance; the other is within-class imbalance. By convention, lralanced data sets,
we call the classes having more examples the majoritgedaand the ones having fewer
examples the minority classes. Simply said, a datasetbiglamced if the classification
categories are not approximately equally represented. Theecblemn attempts to deal
with imbalanced datasets in domains such as fraudulent telephong calls
telecommunications management, text classification and detect@mhspills in satellite

images. There are different approaches to eliminate this issue. Stinoives
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Table 2.3 Parameters of the model

Parameter | Label | Description Unit
Base Refl Display of echo intensity transmitted power returnéBz
reflectivity to the radar receiver the lowest angle (0.5°)

Base Ref2 | Angle of 1.45° dBzZ
reflectivity
Base Ref3 | Angle of 2.40° dBZ
reflectivity
Base Ref4 | Angle of 3.35° dBzZ
reflectivity

Base velocity | Vell | The velocity of the precipitation either toward |or
away from the radar for radar "tilt" angle 0.5°

Base velocity | Vel2 For radar "tilt" angles, 1.45°

Base velocity | Vel3 For radar "tilt" angles, 2.40°

Base velocity | Vel4 For radar "tilt" angles 3.35°

Base SW Spectrum width a measure of velocity dispersion. It is
spectrum recorded at same tilt angle as reflectivity

width

Tipping B The average of 15 minutes obtained from tippifaches
bucket bucket (TB2)

that when over-sampling the minority (abnormal) class and under-sanpé majority
(normal) class are combined, better classifier performanaehieved than only under-
sampling the majority class; like the study of Ling and Li &wubstavo [34, 26]. The
machine learning has dealt with class imbalance in two w@pe way is assigning
distinct costs to training examples the other is to re-sarhpleriginal dataset, either by
oversampling the minority class and/or under-sampling the majaldgs [27].

Japkowicz discussed the three strategies as under-sampling, pliegarand a
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recognition-based induction scheme to evaluate the imbalanceieftida set [28]. The

resampling methods were consisted of random resampling of theagitiersclass till it is

as many samples as the majority class and focused resamlioly resampled only

those minority examples that occurred on the boundary between the yniandt

majority classes.

Table 2.4 Dataset sampling description

Time span 7/1/09, 6:30 AM to 10/24/09,
11.55 PM

Frequency 5 minutes

Instances 32734

Discretized class instances

Tipping bucket data

(2 — 3 and 4 bins are modeled)

Training dataset

7/1/09 to 9/15/09

Testing dataset

9/15/09 to 10/24/09

Some studies discussed over-sampling with replacement and havehattédioes not

significantly improve minority class recognition [26-28]. A heucistnder-sampling

method balanced the data set through eliminating the noise and reduralaptesxof

the majority class [30]. SMOTE (Synthetic Minority Over-gdimg Technique) method

in Nitesh’s study generated new synthetic examples along inlee distinguishing

minority and majority by producing new minority in their rest neighbors it makes the

decision regions larger [31]. He also improved minority classiinaby integrating

SMOTE into a standard boosting procedure class while the whole accurastysaftteas

not sacrificed [32]. Estabrooks proposed a multiple resampling methagh \selected

the most appropriate re-sampling rate adaptively [33]. TechniqueT&VfDoposes an
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over-sampling approach in which the minority class is over-sample creating
“synthetic” examples rather than by over-sampling with reptece and generates
synthetic examples in a less application-specific manner, ésatipg in “feature space”
rather than “data space”. The minority class is over-samplethlbgg each minority
class sample and introducing synthetic examples along the lineestsgjoining any/all
of the k minority class nearest neighbors. Depending upon the amount faovgling
required, neighbors from the k nearest neighbors are randomly chGaan.
implementation currently uses five nearest neighbors. For insi&tioe amount of over-
sampling needed is 200%, only two neighbors from the five nearesboesgire chosen
and one sample is generated in the direction of each. The effdwtidecision trees
generalize better [29].

The ROC curve is a helpful metric to evaluate the learfeerambalanced data
sets. FP rate denotes the percentage of misclassified negative examgpl€R rate is the
percentage of correctly classified positive examples. The R@@e depicts relative
trade-offs between benefits (TP rate) and costs (FP rate)pdihe (0, 1) is the ideal
point of the learners. AUC (Area under ROC) can also be applievalate the
imbalanced datasets.

SMOTE is applied in this research a filtering supervised mesth based
preprocessing step to resample the minority classes. Resukb@awn in Table (2.5) for
3 and 4 bins. In each resampling step, the percentage variefsTben which contains
zero value is the majority so there will be zero percemesdmpling for that and for the
rest of the bins percentage of resampling will be decided tdagar to the frequency of
first bin (majority). Accuracy before and after applicationS®8IOTE is shown below,
overall accuracy may decrease while G-mean certainly iseseaG-mean is an

evaluation index which shows that accuracy of all classes have beercgaiysfa

www.manaraa.com



20

Table 2.5 Comparing results after application of SMOTE

Number| Thresholds Accuracy (%)Accuracy (%)

of bins Before After

3 (-inf-0.0025] 99.50 98.1

bins (0.0025- 0.0175] 77.10 93.5
(0.0175- inf] 88.00 97.1
Total 98.70 96.2

4 bins | (-inf-0.0025] 99.50 97.40
(0.0025- 0.0125]| 76.20 94.10
(0.0125- 0.0325]| 73.90 96.10
(0.0325- inf) 86.20 95.50
Total 98.50 95.90

The process of resampling the minority classes is shown in Fguse Resampling is
applied for each minority class in a loop until we get to theeskasumber to the account

of the majority class which is 31229 for both 3 and 4 bins.

2.1 Parameter selection

While correlation measures the strength of the linear oelstiip, nonlinear
relationships may exist in the data set. Heuristic featelecton algorithms are often
used in the field of computational intelligence to find optimal subk®tanodeling
nonlinear phenomenon. The feature selection algorithms selectdobosted tree
algorithm, as in the previous chapters. These algorithms are “vafapgehin the DT
algorithm to find the parameters in the data that resuliearbest model. In other words
this algorithm employs a heuristic approach to training and ted#itegsubsets in search

of a local optimum.
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Input original formatted
data set

v

Separate majority (maj) and minority
output classes
(minl, min2, min3... minn)

Extract a random

Output class= Maj subsample of size 31229

MIN=MIN-+mini Apply SMOTE (350% MAJ
- of status pattern (Majority class
instances) to mini database)

If 27000<=mini < MAJ

Merge MIN and MAJ

Figure 2.5 SMOTE process in re-sampling the minority classes

Tables (2.6) and (2.7) show the results of the feature swlewith boosted tree
which will be discussed later in this Thesis. To get a b&tture selection, we remove
the memory parameters of the tipping bucket data to see thegaoikother attributes
without the effect of the memory parameter of the tipping buckeest is so dominant.
Elected ones have higher importance than 0.5.

In fact there is no necessity to select some feature® wiith these 50 features
the selected algorithm does the classification in a few nsnuet to get a better

understanding about the model and the attributes we do the fedaatosefor 3 bins
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and 4 bins as are shown in Tables (2.6) and (2.7) respectively. Rimalgtributes with
importance rank above 50 % in addition to the memory parametdrs tpping buckets

are considered to be more important.

Table 2.6 Feature selection for 3 bins

WMPTB WAMPTB
tb(t-5) refl(t- vell(t- sw(t-90) | refl(t-5) | vel2(t) sw(t) vell(t-
30) 60) 60)
tb(t-30) | refl(t-5) | vel2(t- | ref2(t- refl(t- vel2(t-5) | ref2(t-5) | ref2(t-
30) 60) 30) 90)
tb(t-60) | refl(t) vell(t- | ref2(t) refl(t) vell(t) ref2(t) vel2(t-
90) 60)
tb(t-90) | vel2(t- | vel2(t- ref2(t- refl(t- vell(t-5) | sw(t-60) | ref3(t-
90) 60) 90) 60) 90)
refl(t- vel2(t) vell(t) vell(t- | refl(t- sw(t-90) | vell(t- | sw(t-30)
60) 30) 90) 30)
refl(t- vel2(t-5) | ref2(t-5) vell(t- | vel2(t- vel2(t-
90) 90) 30) 90)

2.1.1 Boosted tree

It is crucial to have a feature selection mechanism thatfindna subset of
features that both meets latency requirements and achieves Ieiggnoe. Boosted trees
(and boosting algorithms in general) have been used widely asnadgatgorithm for
ranking search results; there are many advantages of using boesteds a learning
algorithm for ranking. For example, no normalization is needed wheg.USifferent
types of data (e.g., categorical and count data); tradinguotinte efficiency and
accuracy (i.e., relevance for search) can be easily achigvedrzating the number of

trees used in the boosted trees model.
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WMPTB WAMPTB

refl(t) ref3(t-90) tb(t-5) vell(t)
vell(t-5) ref2(t-90) tb(t-30) vell(t-5)
refl(t-5) sw(t-5) tb(t-60) vell(t-30)
refl(t-30) vel3(t-60) tb(t-90) ref2(t)
vel2(t-5) vel2(t-60) ref1(t-90) | ref2(t-60)
ref1(t-90) ref3(t-60) vel2(t-90)| ref2(t-5)
vel1(t) ref2(t-5) vel2(t-30)| sw(t-90)
vel2(t-90) ref2(t-60) | refl(t-60)| sw(t-60)
vel2(t) sw(t-30) ref2(t-90) | ref2(t-30)
refl(t-60) ref3(t-5) refl(t-5) sw(t-5)
vel2(t-30) ref3(t) vel2(t-60)| sw(t)
ref2(t) vel4(t) vel2(t-5) sw(t-30)

WMPTB: without memory parameter of tipping bucket,
IR: importance rank, WAMPTB: With all memory
parameters of tipping bucket

From the perspective of feature selection, a more interegtiogerty of the
boosted trees is that (a greedy) feature selection alregahehs in the algorithm when
selecting splitting features (e.g., for regression trees,isglittatures and splitting points
are found to minimize the squared-error loss for any giventipartof the data).
Moreover, as a byproduct, a sorted list of relative importandeabdires (i.e., a feature

importance list) is automatically generated for each boosted treodel. The relative
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influence of a featurg for a single decision tree to boosted trees as an averagellover a

the trees can be generalized as

JiP=1/mMEM_ ] (Tm) (2.3)

whereM is the number of trees. For each tree the relative importance is calagate

') = S (v = )) (2.4)

where the summation is over the internal nodes t of a L-terminal tneelel,v; is the
splitting feature associated with node t, aﬁé is the corresponding empirical
improvement in squared-error as a result of the split.
2.2 Model training/testing
In training and testing of a data-driven model, there is alwdyaamnce between
accuracy and overfitting, or lack of generalizability, of the mo#shecially for the
purpose of this research, which is to establish a model that caseleat other tipping
bucket locations, generalizability is of great importance. Follgwianet al. (2006), 2/3
of the dataset was used for training, and 1/3 for testing, whighasmmon split to
balance generalizability with accuracy [36]. The networks wested for predicting the
rainfall rate (mm/hr) at the Des Moines tipping buckets. UsMaka’s “(J48)” option
Decision Trees were generated.
2.3 Metrics for Algorithm Evaluation
Three evaluation indexes namely accuracy, sensitivity, and sjigdciie used to
assess the agreement between ground rain gauges and total imibgetvalues. The
evaluation is based upon well-known confusion matrix. Table (2.8) displays

confusion matrix of 3 output class.
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Table 2.8 Description of confusion matrix

Actual
C1 Cc2 C3

Cl | TP1 FP21| FP31
Predicted | C2 | FP12 | TP2 FP32

C3 | FP13| FP23] TP3

TP . .
=i l_l l
Accuracy /Z?&j=1(TPi +FP,) n is the number of bins

(2.5)

Sensitivity (recall) = TPi/(TP LY FP ) (EN))
i i=141ij

(2.6)

Precision (positive predicted value) = TPi/(TP Ly pp )(] =1,23andj # i)
i j=171ji

2.7)

G —mean = /]I, accuracy;
2.8)

In equations (2.5) to (2.8) Tk the number of correctly classified instances in

class i (i=1, 2, 3), whereas, B the number of incorrectly classified instances from
classiin class j.

24 Results

The results for this research are categorized to two maits. garst is the
prediction ahead for the rain gauge named TB2; second, is findingdine under which

the accuracy of the model stays above 85 %, by testing tbatlig in the other rain
gauges’ locations.
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2.4.1 Prediction

The forecasting model by Decision Tree (J48) is shown in theeTghD),
respectively for 5, 30, 60 and 120 minutes ahead. The result for tiséhe itotal
accuracy of the model after feature selection and applicati@ME&TE. As shown in

Table (2.9), the accuracy up to 2 hours is very high.

Table 2.9 Prediction results by total accuracy

No. of Bins | t t+5 t+30| t+60| t+12p

3 96.1] 95.44| 94.89| 94.60| 94.21

4 95.9] 95.2 | 94.58 94.58| 94.21

2.4.2 Radius of accuracy

Among all these 7 tipping buckets in the plant, TB7 has the higheslatmn
with the TB2 station, shown in Table (2.10), because it is the tlosesto it. Even
though the rain gauges are not that far from each other, the amount of ratafaleceby
them is so variant. Moreover level of correlation cannot be decdbdby closeness,
height, being located in upstream or downstream level arefedtige on tipping bucket
records.

Here the results of the comparison among the other six ragegdwave been
discussed. We have 7 tipping buckets in the wastewater plant, so deetnegamodel
based on the radar data and rain gauge data of the TB2 stdiimhaat how distant this
model works accurately. We tested the other six ones which demtdicom the TB2

station as shown in the Table (2.11) and they were depicted in the Figure (2.6).

www.manaraa.com



27

Table 2.10 Correlation coefficients among rain gauges.

TB2 TB1 TB6 TBS TB3 TB7 TB4
TB2 1.00 0.49 0.33 0.47 0.36 0.72 0.52
TB1 0.49 1.00 0.63 0.56 0.40 0.30 0.29
TB6 0.33 0.63 1.00 0.53 0.37 0.22 0.23
TB5 0.47 0.56 0.53 1.00 0.53 0.32 0.34
TB3 0.36 0.40 0.37 0.53 1.00 0.27 0.35
TB7 0.72 0.30 0.22 0.32 0.27 1.00 0.65
TB4 0.52 0.29 0.23 0.34 0.35 0.65 1.00

In Table (2.11), the results of the total accuracy of the ecibree, algorithm
(J48) on the other rain gauges around TB2 is shown. The best accel@aogsbto TB7
and the worst to TB3 as we define the accepted threshold fordheaeag as 95% so the
maximum distance that this model can be used to result the destadacy is the

maximum available distance, 33.13 km.

Table 2.11 Total accuracy of the model tested on the other gauges

No. | Tipping bucket| Distance from TB2(KM) Total accuracy (%
1 | TB6 8.48 96.80
2 TB1 11.04 96.12
3 TB3 18.97 95.19
4 TB7 21.47 96.85
5 TB5 21.63 96.55
6 TB4 33.13 96.01
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2.5 Conclusion
This chapter describes the development of a decision tree traitied\&XRAD-II
reflectivity, velocity and spectrum width data from a weathatia in Des Moines, 1A
and tipping bucket rain gauge data from WRA in West Des Moines, b nfodel was
synced with real time radar and tipping bucket data to providealaedtimation. The
motivation for a system of rainfall estimation is to provide higlesplution precipitation
input for hydrological models. The model compared with previous ssigie algorithms
for converting reflectivity data to precipitation, outperformed in longediptien.
This paper had an overview on the resampling the majority clasOT&E and
description of mathematical section for decision trees sina@stthe most accurate in
the classification models for precipitation. Boosted tree wastsel as tool for feature
selection. Prediction of 120 minutes ahead had the accuracy of &id¥he model was
accurate for the maximum available radius of 33.13 km, hence ¢heaayg of the model
did not deteriorate by getting far from the tipping bucket whichrtbdel was built on, it

just varied.
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CHAPTER 3. TOTAL INFLUENT MODELING

3.1 Introduction

To maintain stable effluent characteristics in a wastewatatment plant
(WWTP), it is desirable to know in advance the influent flow tateéhe wastewater
treatment plant. Wastewater characteristics such as biocdlemiggen demand (BOD),
total suspended solids (TSS), and pH [56-57] are strongly correlatiked tafluent flow
rate. Prediction of the influent flow rate is helpful in optimalheduling wastewater
pumps.

In practice, the influent flow rates are usually estimatethbyoperators based on
experience and local weather forecasts [58]. However, suchagisins are not accurate
enough to manage WWTPs, especially for plants that treat both palncastewater
and storm rainfalls [59]. The precipitation may cause large vétyabi the influent flow
rate, and thus reducing efficiency of WWTPs. Heavy raintaleswhelm the wastewater
treatment system, causing spills and overflows.

Several studies have been performed to model and predict the infbvenate to
wastewater treatment plants [60-61]. Tan et al. [62] usedeztdkrstep predictor to
forecast the wastewater flow rate and obtained reliable pi@sctip to 2 h ahead for
wet weather sewer flow. Using recursive ARX (autoregressgiile exogenous input)
filters, a model based on the flow pattern estimation could hanidlg canditions for
prediction horizons of a few hours [63].

Data-mining is a promising approach to build prediction models.titeigrocess
of finding patterns from data by algorithms versed on the crossafasististics and
computational intelligence [64].

Considering the association between the amount of rainfall and influeifity,
radar data measuring the rainfall are analyzed in thergretaly. Using historical radar

and rainfall data an accurate prediction model can be built. Datagrechniques such
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as neural networks (NN), support vector machine (SVM) etc. arebleapé learning
complex relationship between input parameters and therefore widsdyimditerature
pertaining to qualitative prediction estimation (QPE) and quanttafirecipitation
forecast (QPF) of rainfall [37].

Weather radars generally apply a Z-R relationship as oradibefore to relate
the measured variable. Reflectivity is mostly chosen amongr radaducts since
reflectivity at the lowermost elevation is related to the rain rate [3].

Weather radar has been studied to estimate rainfall quanspjte of being often
considered qualitative. The advantage of weather radars is dlglit temporal
resolution, a full volume scan within to reveal a three-dimensiotraictare of
precipitation. Radars work by sending out an electromagnetio bed measuring how
much of the energy of that beam is reflected back. Foripieoon forecasting,
researchers use radar-derived rainfall products in real-tinmeth&r approach is a
satellite derived precipitation algorithm [15].

The flow monitoring program which includes installation of over &wfmeters
throughout the metro will allow monitoring raw flow in every sectanhe metro as
well as a control for routing raw flow around the metro to storagasmba Knowing the
amount of total influent a few hours ahead makes it possible toadectlke impact of
diurnal flow.

Data mining has been promising in climatic measurement anadadels trained
and built by data mining algorithm can be easily updated [3B8],u$ed to build a model
for total influent prediction over a short time horizon 30 — 60-120 andniiBQtes
ahead. The models are built using the historical data collegtefloly monitoring
program installed in the WRA plant for 6 locations surrounding thet@nd radar data

extracted from NCDC website and total influent to the plant.
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3.2 Problem background

3.2.1 Wastewater reclamation authority (WRA)

The treatment plant is located in Des Moines, lowa and hasdpegated by the
City of Des Moines since 1987. In 2005, WRA was designed to sepopwaation of
317,930 with the average raw wastewater flow load of 50 million gafjenglay. The
ultimate goal of WRA for 2020 is to serve a population of 389,200 witlptheessing
capacity of 74 million gallons per day.

WRA is 77 acre over a mile long. It includes preliminary treattn6 primary
clarifiers, 12 roughing filters, 6 aeration tanks, 12 final firs, disinfection, 2 chlorine
contact tanks, 3 rotating drum filters (RDT), 6 anaerobic digestelisls handling and
treatment, bio-solids disposal and 8 bio filters for odor control.

3.2.2 Data description

In the research reported in this paper, three years anel thoaths long rain
gauge and total influent data from the Wastewater Reclamatidhority (WRA)
spanning from 1/1/2005 until 3/31/2008 was used.

The weather radar in the Des Moines area is located about 32knife WRA
plant. The KDMX station at Des Moines is located 41.7311N, 93.7228W Elewettiden
plantis 41.5712 N, 93.5862 W as shown in Figure (3.1).

The location of 7 rain gauges out of the 86 stations and the location piatite
are the same as described before in chapter 2, Figure (218)s Iresearch only six of
these rain gauges are used in making the model since one ofndmed TB7 was

recently installed and could not provide the information which was required.
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Chlorine
Solution

BS Bar Screens

GR  Grit Removal

PC  Primary Clarifier Flitrate

AT Aeration Tank

FC  Final Clarifier WAS Waste Activated Sludge AD  Anacrobic Digester
CC  Chlorine Contact T-C Thickener-Clarifier SL  Supernatant Liguor
PS  Primary Sludge TS Thickened Sludge DS Digested Sludge
RS Return Sludge 5 Supernatant VF  Vacuum Filter

Distance= 32 km

Figure 3.1 The location of KDMX radar and the WRA plant and the distance
between

Table (3.1) describes the input parameters used in the currenchedeach rain
gauge has four parameters including reflectivity at 4 diffeherghts (1km, 2 km, 3 km
and 4 km height). In addition, to improve the prediction accuracy ofldt@ mining
algorithm, memory parameters have been used [39]. The memory gbararnfor all
inputs and influent output recorded 30 minutes ago, 60 minutes ago, 90 minutaslago
120 minutes before time e.g., t-30, t-60, t-90 and t-120 respectively arédgddn model

construction. Overall, the data consist of 55 input parameters.
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Parameter Label Description Unit

Reflectivity at Radgr display which gives a hprizontal Crossg-

CAPPI height 1 km cl iectlon of data at constant altitude, here it i iBZ

m

Eiﬁf&t'xg’gﬂi > | €2 Altitude of 2 km dBZ

Eifg,eslt';l’ggﬁtt 2 km| €3 Altitude of 3 km dBZ

Reflectivity at

CAPPI height1 4 | c4 Altitude of 4 km dBz

km

Tipping bucket B2 The average of 15 minutes obtained from Inches

data, named TB2 tipping bucket (TB2)

Tipping bucket TB3 The average of 15 minutes obtained from Inches

data, named TB3 tipping bucket (TB3)

Tipping bucket TB1 The average of 15 minutes obtained from Inches

data, named TB1 tipping bucket (TB1)

Tipping bucket TB5 The average of 15 minutes obtained from Inches

data, named TB5 tipping bucket (TB5)

Tipping bucket TB7 The average of 15 minutes obtained from Inches

data, named TB7 tipping bucket (TB7)

Tipping bucket TB6 The average of 15 minutes obtained from Inches

data, named TB6 tipping bucket (TB6)

Tipping bucket TB4 The average of 15 minutes obtained from Inches

data, named TB4 tipping bucket (TB4)

Total influent Inf Raw \_Na.stewater Flow (In building05) low:0 MGD
and high: 260

The CAPPI is composed of data from each angle that is atitjte hequested for

the cross-section. In the early days, the scan data collected sli@wn directly on the

cathodic screen and a photo sensitive device captured each ringvas @ompleted.

Then all those photographed rings were assembled. Weather radacs icoteal time

data on a large number of angles.

Information about various memory parameters is shown in Table (B).first

two year and three months of the data constitute the trainin@g/s&5 to 4/30/07,

whereas, remaining about 1 year is used to construct the prediobidels at various
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time stamps 3/31/07 to 4/30/08. For frequency of 15 minutes thefel 4048 numbers

of samples, also discretized classes of output for three and four bins.

Table 3.2 Attribute labels

TBlcl | TB7c2 | TB6c4 | TBL(t-30) TB3(t-120)
TB2cl | TB1c3 | TB7c4 | TB3(t-60) TB6(t-120)
TB3cl | TB2c3 | TB3(t) | TB6(t-60)| TB7(t-120)
TB4cl | TB3c3 | TB6(t) | TB7(t-60)| TB5(t-120)
TB5c1 | TB4c3 | TB7(t) | TB5(t-60)| TB1(t-120)
TB6cl | TB5c3 | TB5(t) | TB2(t-60)| TB1(t-120)
TB7cl | TB6c3 | TB2(t) | TBL(t-60)| Infl(t-30)
TB1c2 | TB7c3 | TBi(t) | TB3(t-90)| Infl(t-60)
TB2c2 | TBlc4 | TB3(t-30) TB6(t-90) | Infl(t-90)
TB3c2 | TB2c4 | TB6(t-30) TB7(t-90) | Infl(t-120)
TB4c2 | TB3c4 | TB7(t-30) TB5(t-90) | Infl(t)
TB5c2 | TB4c4 | TB5(t-30) TB2(t-90) | -

TB6C2 | TB5c4 | TB2(t-30) TB1(t-90) | Time date

3.3 Research methodology

In this section, description of the proposed approach is provided. In coming sub-

section, different data-processing techniques are discussed.
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3.3.1 Data preprocessing

In order to make the output data suitable for time-seriesifatasi®n, the input
data recorded by the different systems e.g., radar and inflaentire time stamped at 15
min intervals. In general, following pre-processing schemes are used.

Since the radar image covers the location of all tipping bucketsetleetivity
data at nine surrounding cells (dimension of each cell is 1 kinKoy) around the center
of the tipping bucket on the radar map as well as the refligctati the center are
extracted and averaged for each tipping bucket. In the originaktlatasne null values
(denoted as -99) were present, implying that the radar sigealdideen detected. These
null values are treated as the missing values. When the nafieeti the center and nine
surrounding cells were all nulls, the average value of the preredid succeeding
neighbor values are used as the reflectivity for this particidgpmg bucket. The radar
data are also averaged over 15 min intervals.

The influent flow rate data is measured at 15 s intervals. donverted into 15
min average data to bring it to the same frequency as thalfaaté data. The upper and
lower limit on the influent flow rate is 0 and 260 million gallons gday, respectively.
The values beyond the limits are considered as outliers amenaoged in preprocessing
the data. Then UTS offset time is applied for radar datsthit is done to convert the
UTC to local time. The continuous influent data is discretized irfterdnt output class
of varying bin size. A description of influent range for differemt bize is shown in
Table (3.3). Discretization is done by WEKA unsupervised attribliggiig with same

frequency in each bin.

3.3.2 Evaluation metric
Three evaluation indexes namely accuracy, sensitivity, and sjigciie used to

assess the agreement between ground rain gauges and total imbgsitvalues. The
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evaluation is based upon well-known confusion matrix that has been desaribed i

previous sections.

Table 3.3 Discretization of output data

No of Total influent thresholds
bins
3

. (-inf-38.221052]

. (38.221052-49.149128]
. (49.149128-inf)

. (-inf-35.374013]

. (35.374013-43.207119]
. (43.207119-52.403524]
. (52.403524-inf)

I
A OWONRFRWDNPE

3.4 Feature selection and model construction

To obtain a fast and accurate model, the original high dimension ltaiéd e
reduced to low dimension. In the dataset, there are 63 parametdusing memory
parameters recorded 30 minutes earlier (t-30), 60 minuteere&rb0), 90 minutes
earlier (t-90) and 120 minutes earlier (t-120) for tipping bucket sadunel total influent
data. In the research, different methods are applied to select feakardidtelied attribute
eval - ranker, filtered subset eval-greedy stepwise, CSRsewslegreedy stepwise, info
gain attribute evaluator, wrapper subset eval-greedy stepwisd-@ature selection in
Statistica. These algorithms can greatly reduce the diorens$ithe input parameters by
ranking the parameters based upon their importance to the target Gatpexample,
boosting tree algorithm uses gradient boosting approach to predict ploetance of
input parameters [39]. A list of top 20 parameters is display8alote (3.4) and Table
(3.5) for 3 and 4 bins discretization respectively. As anticipatedhaneparameters of
output class e.g., influent are found to be closely associated hathiatget output.
However, in order to select other potential input parameters, ddhdeslue of 0.02 is

set. Also radar data at 1 km for different tipping bucket loca@wesnore important than
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the tipping bucket data. In each table first row indicates theenainthe attribute

evaluator and second row shows the searching method.

As can be observed in the tables above, memory parameters are selediedsmost

the most important ones then radar data for the closest altittideés 3 and 4 km

respectively.

Five promising data mining algorithms namely decision tree (Jd48garest

neighbor k-NN), Support vector machine (SVM), Naive Bayes (NB), Logistgression

(LR) and Radial Basis Function (RBF) are initially seled¢tethuild prediction model at

time stamp t.

Table 3.4 Attribute selection for 3 bins

Filtered attribute CFS subset evalWrapper subset Feature selection -
eval eval statistica
Ranker Greedy Greedy stepwise Chisquare and Pvalue
stepwise
Infl(t-30) Infl(t-30) TB1cl TB2cl
Infl(t-60) Infl(t-60) TB2cl TB3cl
Infl(t-90) Infl(t-90) TB3cl TB4cl
Infl(t-120) Infl(t-120) TB4cl TB5c1
TB2cl TB2c2 TB5cl TB6cl
TB2c2 TB3(t-90) TB6cl TB7cl
TB2c3 TB2(t) TB7c1 TB1c2
TB2c4 TB5c4 TB1c2 TB2c2
TB7c4 TB1lc2 TB2c2 TB3c2
TB7cl TB1(t-120) TB3c2 TB4c2
TB7c3 TB4c2 TB4c2 TB5c2
TB7c2 TB5(t) TB5c2 TB6C2
TB3cl TB2(t-120) TB6C2 TB7c2
TBlc4 TB6Cl TB7c2 TB1lc3
TB3c2 TB7c4 TB1c3 TB2c3
TB4c4 TB7(t-30) TB2c3 TB3c3
TB4c3 TB3cl TB3c3 TB4c3
TB6cl TB2(t-60) TB4c3 TB5c3
TB4c3 TB2c4 TB5c3 TB6C3
TB1c2 TB7(t-120) TB6C3 TB7c3
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Among the selected set of algorithms, decision tree and logsgession

algorithms outperformed other algorithms Table (3.6). Since, the nsodstructed by

decision tree algorithms are easy to comprehend, therefors, liclea finally selected to

build prediction model at all of the time stamps. Various trees agplied for modeling,

like random forest, random tree, REP tree and J48 which the mossprgmasult was

obtained by J48.

Table 3.5 Attribute selection for 4 bins

Filtered attribute Gain ratio attribute Fea_ture selection - OneRAttribute eval
eval eval statistica
Ranker Ranker Chisquare and Ranker
Pvalue
Inf(t-30) Inf(t-30) TB2cl Inf(t-30)
Inf(t-60) Inf(t-60) TB3cl Inf(t-60)
Inf(t-90) Inf(t-90) TB4cl Inf(t-90)
Inf(t-120) Inf(t-120) TB5cl Inf(t-120)
TB2c3 TB2c3 TB6C1 TB2c3
TB2c4 TB3(t-120) TB7cl TB2c4
TB2c2 TB3(t-90) TBlc2 TB2cl
TB7c4 TB2c4 TB2c2 TB7c4
TB7c3 TB3(t-60) TB3c2 TB2c2
TB7c2 TB7(t-120) TB4c2 TB6C2
TB4c4 TB2c2 TB5c2 TB7c3
TB7cl TB7(t-90) TB6C2 TB1(t-30)
TB4c3 TB7(t-60) TB7c2 TB1(t)
TB2cl TB3(t-30) TB1c3 TB1(t-120)
TB4c2 TB7c4 TB2c3 TB1(t-90)
TB4cl TB7c3 TB3c3 TB1(t-60)
TB3cl TB6(t-60) TB4c3 TB1lc4
TB1c4 TB6(t-120) TB5c3 TB6C1
TB1c3 TB6(t-30) TB6C3 TB3c4
TB3c2 TB6(t-90) TB7c3 TB6¢c4
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Table 3.6 Algorithm selection for 3 bins of output class

Prediction Accuracy (%)
Output class
Overall

Algorithms (-inf- (38.221052-| (49.1491

38.221052]| 49.149128] | 28- inf]
J48 94.4 90.9 93.8 93.0
k-NN (k=5) | 92.0 86.1 90.4 89.5
NB 89.6 83.4 91.1 87.7
LR 94.4 90.8 94.0 93.0
RBF 89.9 83.4 90.9 87.8

Table 3.7 Algorithm selection for 4 bins of output class

Prediction Accuracy (%)
Output class
Overall
Algorithms - . .
’ & %% 9% |3
I o< - N )
N 5 o8 |
£ ™ T S N 2 b
<3 0l I |LE
J48 92.7 86.1 88.8 |95.1 |90.7
k-NN (k=5) | 89.8 78.7 82.8 92.31 85.8
NB 87.5 75.6 79.8 92.1 83.8
LR 92.8 87 88.6 95.3| 90.6
RBF 87.7 74.5 80.6 91.8| 83

Summary of the results obtained through decision tress algorithmddfexent
output bins is shown in Table (3.8). The overall accuracy of the modsVays found in
the range 90%-93% for different bin size, whereas, g-mean of thatailass was also

found to be high, indicating algorithm is able to correctly predict all output classes
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In this part results which were derived from training dagaare shown in tables

and figures. In this section models built using decision treariligns at various time

stamps are discussed. Evaluation criteria namely accurawsitiaéy, specificity and g-

mean are analyzed for models built for various bin size.

Here classification matrix can be seen in Figures (3.2) &3) {espectively for

three and four bins. These figures are displayed to graphicallglie the accuracy of

individual output class.

Table 3.8 Results obtained using decision tree algorithm on training set

No. of | Total influent Precision | Recall
TP rate G-mean
bins threshold (PPV) (sensitivity)
(-inf-38.22] 94.4 94.4 94 .4
3 (38.22-49.14] 90.9 90.9 90.7 93.1
(49.14- inf] 93.8 93.8 94.2
(-inf-35.37] 92.7 92.8 93.1
90.6
(35.37-43.20] 86.1 87.1 87
4
(43.20- 52.40] 88.8 88.7 88.5
(52.40-inf) 95.1 95.3 95.1

The relative dense accumulation of data points along the actuktipceaxis of

output bins indicate the output classes are correctly predictedahtst time. In the

figures below, x and y axis represents the predicted and observed classuagpe
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Figure 3.2 Classification matrix for three bins

Figure 3.3 Classification matrix for four bins
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3.5 Computational results
3.5.1 Testresults

The results of applying the algorithm on testing intervalshgavn in Table (3.9).

Testing interval is from 3/31/07 to 4/30/08 the result is as promising asy @iei.

Table 3.9 Results obtained using decision tree algorithm on training set

No. of | Total influent TP rate Precision | Recall G- Total

bins threshold (PPV) (sensitivity) | mean | Accuracy
(-inf-38.22] 91.3 91.3 91.5

3 (38.22-49.14] 87.7 87.7 87.2 91.4 92.8
(49.14- inf] 95.6 95.6 95.8
(-inf-35.37] 90.0 90.0 90.0
(35.37- 43.20] 85.3 85.3 85.3

4 (43.20- 52.40] 88.2 88.2 88.2 89.5 0.8
(52.40-inf) 94.8 94.8 94.8

3.5.2 Prediction results
Table (3.10) and (3.11) display the overall accuracy obtained usoigjatetree
algorithms by WEKA. Algorithm is accurate enough to prediduerit up to 60 minutes

in the future; however, the accuracy drops in further time-stamps.

Table 3.10 Three bins prediction

Class label \T((()t;al accuracy t+430min|t+ 1 hr | t+2hr| t+3 hr
(-inf-38.221052] 91.3 84.7 78.4 66.4 55.9
(38.221052-

49.149128] 87.7 80.2 72.8 58.7 47.0

(49.149128- inf] 95.6 93.6 91.6 87.5 83.5
total 92.8 88.6 845 76.5 69.4
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Table 3.11 Four bins prediction

Class label Total accuracy(t t+30mit+ 1 hr | t+2hr| t+3 hr
(-inf-35.374013] 90.0 83.7 77.4 66.3 57.0
(35.374013-

43.207119] 85.3 74.4 63.8 46.6 35.8

(43.207119-

52.403524] 88.2 80.5 72.9 58.8 48.1

(52.403524- inf) 94.8 91.8 88.8 83.0 77.9
Total 90.8 84.7 78.7 68.0 59.8

3.6 Regression (time series regression)

A data-mining approach to predict influent flow rate in a waatewtreatment
plant for a short-term period (up to 180 min ahead) is presented. &tietjgn model is
constructed by data-mining algorithms using radar reflectivitg, dainfall rate data, and
the historical influent flow rate data. Radar reflectivityadatn be used to forecast
weather several hours or even several days alhedde regression model, inputs and
output for this model are the same as classification model wopsesections. Sampling
interval is 1/1/2007 2:00:00 AM to 3/31/2008 11:45:00 PM, with the frequency of 15
minutes, there are 43768 instances. Training interval is 1/1/2007 2:00:00t0AM
11/1/2007 12:15:00 AM and it is tested over 11/1/2007 12:30:00 AM to 3/31/2008
11:45:00 PM. A multilayer perceptron neural network (MLP) is useduid the
prediction model and compare its accuracy with models constructdddeyother data-
mining algorithms. The best performing algorithm is selectetduitd the prediction
model. The prediction results are evaluated by prediction metrics and discusged.in de

In Figure (3.4) it can be observed that the amount of rainéalles from one
location to other location and based on correlation coefficient nthgne is a nonlinear

relation among them.
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Figure 3.4 Rainfall comparisons among six tipping
buckets in WRA area

3.6.1 Data preprocessing

The historical values of influent flow rate, rainfall rate, andarareflectivity are
used to construct the prediction model. The influent flow rate dasaceléected at the
Des Moines Wastewater Reclamation Facility (WRA), lowa.A\flRocessed wastewater
from 16 metro area municipalities, counties and sewer distridisei Des Moines area.
Also, the tipping bucket values were recorded to the 0.0001 mm/hr, weehesd
excessively precise. These values were rounded to the n@&Esthm/hr for modeling
purposes. And the rest of the preprocessing steps are the sdraelasgification except

discretization which is not required in this section. Training artithtegtervals are the

same as previous section.
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3.6.2 Feature selection and algorithm selection
Three methods are used for feature selection, boosted tree, raodesh &nd

feature selection in Statistica software. The results are listed bekhwe Table (3.11).

Table 3.12 Feature selection results by different methods

Boosted tree Random fores  Statistica
infl(t-15) infl(t-60) TB5(t-30)
infl(t-30) infl(t-90) TB7(t-30)
infl(t-45) infl(t-15) TB2(t-30)
infl(t-60) infl(t-45) TB7(t-60)
infl(t-90) infl(t-30) TB7(t-90)
infl(t-120) infl(t-120) TB1(t-30)
TB7(t) TB2(t-30) infl(t-60)
TB2(t-60) TB7(t-30) TB5(t-60)
TB5(t) TB2(t-90) TB5(t-90)
TB1(t) TB2(t-120) TB7(t-120)
TB7(t-60) TB5(t) TB6(t-60)

As shown in the tables above tipping bucket memory parameters aHeutit/e
on the output significantly while memories of total influent radéa @& 1, 2, 3 and 4 km
of some locations are recognized as important ones. Differentuiaitag algorithms are
used to build the prediction model for prediction of the influent flow. fe#e metrics,
the mean absolute error (MAE) and mean squared error (M®&Elsmd to measure

prediction accuracy. MAE is a common used quantity in time sanalysis to measure
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how close the predictions are to the observations. MSE is a way to quantify éneratiéf

between the values implied by the prediction method and the truesvdtuis a risk

function corresponding to the expected value of the squared error hessxpressions to

calculate MAE and MSE are shown in (3.1) and (3.2) and the tralyedithms are

shown in Table (3.12). The most promising results are obtained by NN.

Table 3.13 Regression model accuracy

Correlation

No. | Algorithm MAE coefficient MSE

1.095 0.988 4.215
1 NN

3.041 0.945 20.699
2 Random forest

1.776 0.970 11.162
3 Boosted tree

1.476 0.985 5.461
4 SVM

MAE=%2| f—y](3.1)

i=1

2

1 n
MSE=— f—-v ] (3.2
nZI Y132

i=1

3.6.3 Computational results

MLP is chosen as the best algorithm, here are the resul&bia {3.13) for 5 best

MLPs. Using Statistica’s “Automatic Network Search” option 200 MLWe&re generated

with random attributes. Some of these characteristics veammihg rate, momentum,

number of hidden layers, and number of nodes. The activation functiedsrtrthe

neurons were the identity, logistic, tanh, and exponential functions. The top 5 pegform

MLPs were retrained (tuned).
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Table 3.14 Five best MLPs

Net. name Training Test Validation | Training | Test Validation
perf. perf. perf. error error error

MLP 60-58-1 | 0.9936 0.9922 0.9940 4.3895 4.9218 4.0127

MLP 60-19-1 | 0.9929 | 0.9918| 0.9941 4.8712 5.1533  3.9841

MLP 60-8-1 0.9933 0.9921 0.9940 4.6041 5.0144 4.0164

MLP 60-19-1 | 0.9946 0.9925 0.9941 3.6727 4.7132 3.9253

MLP 60-11-1 | 0.9932 0.9921 0.9940 4.6870 5.0090 4.0207

Prediction results are shown in the Table (3.14), these resealtal®an from the
MLP network 60-58-1 (Tanh-logistic). Correlation coefficient rairting data set was
0.994 and when it was tested over testing period it decreased to 0.88Bt ibn
decreasing while testing over longer times ahead. Another ewaluagtrics which was
applied is standard deviation, for predicted values, standard deviatyenl stanstant as
13.218 while for observed ones for t to t+180 as observed in table belod théwse
values successively 13.624, 13.624, 13.625, 13.627, 13.628, 13.630, 13.631 and 13.633.

Prediction continued till the correlation is higher than 0.85.

Table 3.15 Prediction results

;I;est) T+15 | T+30 | T+60 T+90 | T+120 T+150 T+180
gggf'f .988 0.983| 0.976g 0.958 0.934 0905 .872 0.8B36
MAE 1.09 148 | 1.89 | 2.75 3.61 4.46 5.20 6.02
MSE 4.21 5.83 | 820 | 14.59 2293 33.21 4488 57.89
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Figure 3.5 MSE of the model for the prediction of the influent flow rate

Based on plots below it can be seen that predicted values and obsdnesdare
highly correlated and it demonstrates that algorithm is higidyrate. The figures below

are test and validation samples plot of predicted versus observed.
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Figure 3.6 Test samples plot of predicted vs. observed
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Sarﬁplés: Validation
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Figure 3.7 Validation samples plot of predicted vs. observed

By building 7 MLP prediction models at t + 15 min, t + 30 min, t 460, t + 90
min, t + 120 min, t + 150 min, and t + 180 min respectively, the inflil@entrate can be
predicted up to 180 minutes ahead. In Figure (3.9) it can be seetheéhptedicted
influent flow rate is close to the observed influent flow rate, dwedttend for both
predicted and observed values is same. However, there is a atighur Ithe predicted
values. This lag becomes larger with longer prediction horizon. It caleaegy found in
Figure (3.10) which predicts the influent flow rate at time 180 min ahead. Even

though the trend is successfully predicted, the response for the prediction model is slow
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Figure 3.8 Prediction of the influent flow rate at current time t
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Figure 3.9 Prediction of the influent flow rate at time t + 30 min
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Figure 3.10 Prediction of the influent flow rate at time t + 180 min

3.7 Conclusion

To maintain stable effluent and optimally arrange wastewatettibggsumps, it
is helpful to know in advance the influent flow rate to the wastweeatment plant. In
this chapter, the prediction model of influent flow rate up to 180 amead was built
using rainfall rate, radar reflectivity, and influent floweras predict inputs. The influent
flow rate data were collected at Wastewater Reclamation FabiliRA), the rainfall rate
data were recorded by 6 tipping buckets surrounding WRA, and theredldativity data
were obtained from the radar map through nearby radar statiomlathevere converted

to have same frequency by taking the average based on different frequencies
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Among four data-mining algorithms used in this paper, Decisiors tfee
classification and the MLP neural network for regression perfdrbedter than other
algorithms applied to build the prediction model. It was selettec¢tonstruct the
prediction model of influent flow rate for all prediction horizons froto t + 180 min.
The results showed that the prediction model predicted the influentdkewvell till t +
150 min. The predicted influent flow rate was close to the measuiflednt flow rate,
and the trend for both predicted and observed values was same. In addit®myabe
lag between predicted and observed influent flow rate after t +i80 and the lag
became larger with longer time horizons. At t + 180 min, i.e., 3 habead, the
prediction accuracy metrics indicated that the prediction moddbrpeed not well
enough.

Prediction of the influent flow rate 150 min ahead might give enoungé tor
wastewater treatment plant to arrange operators and schedufes.ptiowever, the
prediction accuracy of the prediction model should be improved in futuearodsin
order to provide long term prediction with acceptable accuracyade of heavy rainfall,
long term prediction will give more time to wastewater tresit plant to make operation

plans.
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CHAPTER 4. PERFORMANCE PREDICTION OF A
WASTEWATER TREATMENT PLANT
4.1 Introduction

If a model is developed based on historical observations of main gi@ranto
predict the performance of the plant, there will be a saferabpe and easier control of
the wastewater plant. Wastewater treatment plants consishevhical, physical and
biological processes. Neural Networks can work as performaregicfors for such
nonlinear complex processes. To assess the performance, histatealof key
parameters are applied in the model. For example, biological oxdgmand (BOD),
suspended solid (SS) and chemical oxygen demand (COD) [40]. Qualitfueis are
deteriorated by wastewaters and plant effluents, hence t@sacthe potential of water
reuse, advanced treatment is needed [48].

Intelligent methods for prediction of WWTP parameters are widsbd in the
recent decades. Chen, Chang, and Shieh (2003) used a novel approacbnbbi$¢d
model to predict nitrogen contents in treated effluents [42]. Totakesded solid (TSS)
is an indication of plant performance. Belanche, Valde's, Comas, Rodi@och (2000)
predicted TSS based on Neural Networks [43]. Shetty and Chellad3)(2@velop a
neural network model to predict long term fouling of nanofiltrationmim@nes that are
used to purify contaminated water supplies [44]. Hamed et al (2004 NMedodel to
predict biological oxygen demand (BOD) and suspended solid (SS) conoastrak
plant effluent [39]. Maier, Morgan, and Chow (2004) modeled alum dosingcsurfa
waters by NN [46]. Kohonen found that low pH in biological reactor lang solid
retention time caused high concentration of BOD and TSS by usengetf-organizing
feature maps to calssify data [49]. In another NN model, paraseastion for entering
the network resulted that porous media porosity, wastewater teomeesand hydraulic
residence time are the main parameters affecting BObvanalso COD removal was

highly correlated to BOD removal [50].
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One-line training of the neural network model may improve the predic
accuracy [47]. Oliveira-Esquerrea [51] used multilayer perceptfelLP) and
functional-link neural networks (FLN) and to model and predicts ialed outlet
biochemical oxygen demand (BOD) and developed them using linear matgvar
regression techniques.

4.2 Plant layout: a case study

The NN model was applied to Wastewater Reclamation AuthoritR AW The
models were tested for different configurations of input—output tisiag the results of
this modeling process, the plant operator will be able to have assas=® of the
expected plant effluent for a given quality of the wastewdteas at input locations. A
schematic diagram of the plant is shown in Figure (4.1).

Main outfall, sewer and fourmile are collected in raw wastewgunction
chamber then screened for removal of grits. Settled solids appsc down in the
hoppers and carried to paddle mixers. Aerobic bacteria aneat®cti by aeration and
mixing with activated sludge. After roughing filters processatan tanks starts working
and chlorination system. Rotary Drum Thickeners navigate solid foattee secondary
digesters and gas is generated.

4.3 Data collection

It was decided to relate the outputs of the treatment effluegnstto the inputs
of the stream (influent). Therefore, measurements of the carboisat@achemical
oxygen demand (CBOD) and total suspended solid (TSS) in the efftreaim and
influent stream were collected over period of 1/1/2008 to 12/31/2010, 3 gkdeda.
This period was satisfactory as it covers all probable selaganations. Parameters in

the model are introduced in Table (4.1).

www.manaraa.com



Crude
supply

Preliminary
Treatment

55

Preliminary treatment effluent Secondary treatment effluent

Post
Treatment

Secondary
Settlement
Tanks

Preliminary
Settlement
Tanks

Aeration
Tanks

Consolidation
Tanks

Sludge
Thickeners

Digesters

Figure 4.1 Schematic diagram wastewater processes

Table 4.1 Parameters of the model

Parameter Label| Description Unjt

CBOD in influent plant| infl- | Amount of CBOD in influent stream mgll
CBOD

TSS in influent plant infl- | Amount of TSS in influent stream mg/l
TSS

CBOD in effluent plant| efl- | Amount of CBOD in effluent stream  mg/l
CBOD

TSS in effluent plant efl- | Amount of TSS in effluent stream mg/|
TSS

Total influent to the Infl Amount of total influent to the GPD

plant wastewater plant (Building 05)

The measurements were performed in the plant almost for 3 degeka CBOD

and TSS are measured and sent to the laboratory. Based on thet déy sisually do

the sampling on Wednesdays, Thursdays and Fridays but it may dhasmeae weeks

and sometimes they measure only twice a week even not on sueckss, because of

inconsistency in the method of sampling, frequency of 7 days is sgpasthe model
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and the average is taken for all available values in a weelcansidered as data setl,
different data sets are defined for other approaches. Sanmglohgne over the period
1/1/2008 to 12/31/2010, hence there are 157 instances with 7 days frequehtypfirs
years are used as training data set and the rest which is 1 year isrfgr tes

In datasetl, it is supposed that measurements are done weeklyaserduge of
three values in each week is calculated and there were 157 data poatdta set 2, it is
supposed that the measurements are done in a daily manner, soehete data points
and for the whole sampling interval which is 3 years it is requio have 1095 data
points, so interpolation is applied to fill 655 missing values and tlegpmiation is not
only based on historical data but also based on the amount of the thahtrtd the

plant.
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Figure 4.2 Data sequence of CBOD and TSS in influent, time
unit is week and chemicals’ unit is mg/I
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Figure 4.3 Data sequence of CBOD and TSS in effluent,
time unit is week and chemical’s unit is mg/l

The conventions efl-CBOD, efl-TSS, infl-CBOD and infl- TSS holdG&OD in
effluent flow, TSS in effluent flow, CBOD in influent flow and T3% influent flow,
respectively.

4.4 Data preparation, preprocessing and statistical analysis

The CBOD and TSS were selected because they can be usedsasandor the
effectiveness of the wastewater treatment plant. Dataingfivas done by taking the
average of 2 or 3 values in each week then excluding the outliecersidering the
acceptable limit in the plant controlling system and excludiegvalues which were not
in the range oft3c around mean.

Various manipulations can be applied to decipher data series, nesharch data
series are normalized. The main objective here is to ensuria¢hstatistical distribution

of the values for each net input and output is roughly uniform. In additienydlues
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should be scaled to match the range of the inputoms. The data sets are usually sc.
so that they always fall within a specified rangeh®y are ncamalized so that they ha
zero mean and unity standard deviation. This iseaeld by normalizing the mean a
standard deviation of the data

The preprocessed data set was analyzed statigtiogpllgenerating a box ai
whiskers plot for each variab These plots summarize each variable by t
components; a central line to indicate central émcg or location; a box to indice
variability around this central tendency, mediad arhiskers around the box to indici
the range of theariable. This is shown in Figure (4, whichis derive( from raw data
before any preprocessing. The plots illustratestttent of outlier density in each varial
as indicated by the points extending beyond theskens. In addition, it shows the rai

of each variable and, consequently, the efficiavfaye plant treatmer
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Figure 4.4Box diagrams for the plant data for effluent and irfluent streams
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4.5 NN modeling; methodology

The NNs can be categorized in terms of topology such as sndlenulti-layer
feedforward networks (FFNN), feedback networks (FBNN), mecurnetworks (RNN),
self-organized networks. In addition, they can be further categoiizettrms of
application, connection type and learning methods. The most commonly ypseoft
networks in the field of modeling and prediction is the FFNN. In thgology, the
network is composed of one input layer, one output layer and a minimum bfduien
layer. The term feedforward describes the way in which the owtptite FFNN is
calculated from its input layer-by-layer throughout the network.

Activation functions for the hidden units are needed to introduce the naniyne
into the network. The Sigmoidal functions, such as logistic and tanhthan@aussian
function, are the most common choices for the activation functions. Thal rsgstem
architecture is defined by the number of neurons and the way in waaheurons are
interconnected. In this research Gaussian is applied for ddtébseause of its most
promising result.

The data are normally divided into three subsets; training, validaind testing
subsets. The training subset data are used to accomplish theknletavomg and fit the
network weights by minimizing an appropriate error function. Bagkugation is the
training technique usually used for this purpose. It refers to thtigochéor computing the
gradient of the case-wise error function with respect to thghtgefor a feedforward
network. The performance of the networks is then compared by ewgluag error
function using the validation subset data, independently. The testing dabsare then
used to measure the generalization of the network (i.e. how acgutiéelnetwork
predicts targets for inputs that are not in the training set)ishsometimes referred to as
holdout validation. Training, test and validation ratio which was appfigtlis research

is 4:2:1.
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There are many reported techniques to avoid underfitting and twgruch as
model selection, jittering, early stopping, weight decay, Bayes$&amning, and
combining networks, in this research different values for welgbay is applied to avoid
over-fitting.

The structure must be optimized to reduce computer processingyeagjued
performance and avoid overfitting. The selection of the best numberddérhiunits
depends on many factors. The size of the training set, amount ofindise targets,
complexity of the sought function to be modeled, type of activationibngused and
the training algorithm all have interacting effects on thesstfehe hidden layers. There
is no way to determine the best number of hidden units withoutrigag@iveral networks
and estimating the generalization error of each.

4.5.1 NN vs. regression

Neural networks extract information from data in the form of pted input—
output models also they provide a very general framework to apprexengttype of
nonlinearity in the data [52].

Regression equations are very useful, but they simplify a compsens, like
wastewater plants, into a few parameters, and may ignore crucaabfgs0].

NN are used as nonlinear modeling techniques for CBOD and TS&tme.
Because neural networks are parallel and have betternfijteapacity moreover with
noisy or incomplete data NN usually perform better than linear m¢8glHowever, as
neural networks function known as black boxes, are difficult to integome unknown in
physical insight of data [55], in addition, Multilayer perceptronLBy1 have been

successfully used in modeling biological wastewater treatment pescis 54].
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Figure 4.5 Schematic of the multi-layer NN

4.6 Results and discussion

In this section statistical results for each data set aerided, then the modeling
and prediction is presented, finally the results of all sectioms@mpared and the most
promising one is introduced.

4.6.1 Dataset1l

46.1.1 Statistical analysis

Correlation coefficient table was a preliminary multivariablatistical analysis
which was used to explore the degree that a linear model canbeethe relation among
variables. Correlation matrix is used widely to measure @iioel or association. It can
give the idea that which variable is better to use to predictttiex on based on a linear
relation. As shown in Table (4.2), there were some degrees of agatation between
the variables in influent and in the effluent. The weakness of tlhes/an table proves
that conventional regression techniques in modeling such a complex pwoltegise

poor results so there is a need to use complex modeling.
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Table 4.2 Correlation matrix for plant variables

Correlation Coefficients
infl- infl-TSS | efl- efl-TSS
CBOD CBOD
infl-CBOD 1 0.193692| -0.12027| -0.16956
infl-TSS 0.193692 1 0.035442 0.069419
efl-CBOD -0.12027| 0.0354421 0.476558
efl-TSS -0.16956| 0.0694190.476558 1

4.6.1.2 Modeling results

Neural network toolbox in Statistica is utilized for this angly$he previously
described neural networks design procedure is applied to model thEPWWWo NN
input topologies are considered for the plant modeling, different asatigns of input—
output data. There are six different configuration of input-outputabeaseen below in
Table (4.3).

In the first approach, each of the influent variables (TSS, @B® used to
predict each of the effluent variables. In the second approach nputi-variables are

used to predict the corresponding output variables in the effluent stream.

Table 4.3 Different configurations of input-output

Model number Input Output
1 Infl-TSS Efl-CBOD
2 Infl-CBOD Efl-CBOD
3 Infl-TSS Efl-TSS
4 Infl-CBOD Efl-TSS
5 Infl-TSS, Infl-CBOD | Efl-CBOD
6 Infl-TSS, Infl-CBOD | Efl-TSS

To keep the model simple, 1 hidden layer for single input and 1 hidglenfor
multiple inputs are used. On the other hand, the number of neurons in the lageteis

selected after testing the performance of the networldiffatent combinations. It is
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noticed that 40 and sometimes 60 neurons is the least number of neurbeshioiden
layer, which converged to a final solution.- for multi-layer. é@er, for the multi-input
case the hidden layer contains 40 neurons.

The constituents of the network layers, i.e. types of neurons, were ta be
Gaussian after testing different combinations. MLP was apmied tonfigurations but
there was not any promising result. The results below all hadl RB#ning algorithm
and error function was sum of squared error, hidden activation is i@awssl output
activation is ldentity.

The computational results are shown in Table (4.4). The table ieslita most

promising networks yielded from automated research in Statistica toiceatiguration.

Table 4.4 Summary of trained NN results for different
input-output variable combinations

Input | Output| Net. | Training | Test | Validation| Training| Test | Validation
name | perf. perf. | perf. error error | error
TSS TSS RBF | 61.50 16.71| 24.29 5.73 6.4%5 3.95
1-40-
1
CBOD | TSS RBF | 64.68 31.32| 15.24 5.40 586 5.29
1-60-
1
CBOD | CBOD| RBF |51.38 17.15| 25.53 0.01 0.01 0.01
1-60-
1
TSS CBOD| RBF | 46.64 18.35| 39.72 0.01 0.01 0.09
1-40-
1
TSS, | TSS RBF | 58.28 19.96| 46.42 6.08 566 2.64
CBOD 2-40-
1
TSS, | CBOD |RBF |21.04 25.60 | 10.00 0.01 0.00 0.00
CBOD 2-40-
1
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4.6.2 Data set 2

In preprocessing step outliers are thrown out based on the limitd@doby
plant; also reinforced by 6sigma principal which was applied betor have an
acceptable range for all variables in the model; for influé@ngcals minimum and
maximum for CBOD are 20 and 443 mg/l respectively and for TSShd01a260 mg/I
respectively. On the other hand, in effluent stream minimum andhmaxfor CBOD
are 4 and 20 also for TSS 2 and 88 mg/l respectively, these fianitsfluent rate to the
plant are 0 and 260 GPD. Time span for sampling is 1/1/2008 to 12/30/200%svhere
1/1/2008 to 4/30/2009 is considered for training and 5/1/2009 to 12/30/2009 for,testing
there are 730 points of daily data with many missing valueseTd3) shows different

configurations of inputs and outputs.

Table 4.5 Different configurations of input-output

Model number Input Output
1 Infl-TSS, Infl-CBOD,influent| Efl-CBOD
2 Infl-TSS, Infl-CBOD, influent] Efl-TSS

In data set 2, total influent is added to the model, correlatioffic@ert among
total influent and rest of the attributes is shown in Table (4.6gs@ weak values

demonstrate feeble linear relationship among new income and old elements ofldie m

Table 4.6 Correlation coefficient of total influent
and other attributes of the model

inflCBOD | infTSS | influent | efICBOD | eflTSS
Influent | -0.65 0.05 1.00 0.25 0.07
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Boosted tree algorithm was applied for feature selection, ltositam is already
described in previous sections, and the results are explained for @GBODSS output.
As can be seen in the table when the output is TSS, influent TS®tahdhtiuent are

more important than the influent CBOD, and exactly the same for configuration 2.

Table 4.7 Boosted tree results in feature selection

CBOT out put TSS out put
Inputs Variable Rank Importance, Variable Rank Importance
inflCBOD | 100 1.00 100 1.00
influent 67 0.67 63 0.63
infTSS 35 0.34 60 0.60

Based on the most promising results derived from the other eatMEPs are
chosen and trained for this data set. Configuration 1 has the oufpGB@D) and best
MLP networks obtained by Automated search in Statistica feraghown in Table (4.8).

Configuration 2 has the output (Efl TSS); the best networks are shown in Table (4.9).

Table 4.8 Best MLP networks for configuration 1

Net. name| Testperf| ValidationTest error | Validation Hidden Output
perf. error activation | activation

MLP  3-

163-1 0.638295| 0.829115 0.433823 4.692967 Exponertgbonential

RBF 3-50-

1 0.277232 | 0.501661] 0.460141 5.651888 Gaussian Identity
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Table 4.¢ Best MLP networks for configuration 2

Net. name Test perf. | Validation | Test error | Validation Hidden Output
perf. error activatior | activation

MLP  3-

91-1 0.760129 | 0.472630 | 2.673671| 5.606065 Tanh | Exponential

MLP  3-

17-1 0.750982 | 0.445657 | 2.746222| 5.067053 Tanh | Logistic

RBF  3-

30-1 0.608495 | 0.550173 | 3.955731| 4.131057 Gaussia | ldentity

In Figures (4.6) to (4.9) correlation between pecestl values and observed vali
in testing and validation samplis visualized, as can be seen tiiserved and predicte
valuesdo not follow the expected linear relation, thatthe reason that datat 3 is

defined to see if the error can be decreased lnygfithe missing value
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Figure 4.6 Observed versus predicted values for validation sapfes
- configuration 1
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4.6.3 Data set <

The other approach is to interpolate the missirigesin CBOD and TSbased
on historical data and total influent to the plédtaset3), which will change frequer
of the data from 7 days to 1 day and more datatpdar the interval of 2 years (20
and 2009).

After statistical analysis and modeling of thisadaet,the results of the week
data will be compared to the results of daily interpolated dailydata to find out whicl
one is more promising and yields better re

Interpolation is applied to fill 655 missing valuasd the interpolation is not on
basel on historical data but also based on the amolttieototal influent to the plan
other sections like feature and algorithm selec¢tgampling interval is the same as ¢

set2.To fill the missing values, these equatioescatculated and applie

www.manaraa.com



69

e InfICBOD (Y1) based on total influent (x), Y1=f(x0)
e InfITSS (Y2) based on total influent (x), Y2=f(x0)

e EfICBOD (Y3) based on inflCBOD (x1), Y3=f(x1)

e EfITSS (Y4) based on infITSS (x2), Y4=f(x2)

To formulate CBOD in influent based on the total influent rate, s®ges of
input and output of the model were applied in software Eureqa and eqdation
interpolation was produced shown in equation (4.1). Equation (4.2) is thal&bion of
TSS in influent based on total influent rate to the wastevpddet. Eurega (pronounced
"eureka") is a software tool for detecting equations and hidden mathdmelatanships
in data. Its primary goal is to identify the simplest mathesahformulas which could
describe the underlying mechanisms that produced the data. The elgost¢ions have
the least value for fitness function, most correlation coefficieast linear residual and

least mean and absolute errors.

Y1= £(x0) = 299.15387 + 21.633059 «sin (376-6543/ 1y — 11.803284
sin(0.83268148 * x0) — x0 (4.1)

Y2= f(x0) = 283.78384 — 42.428005 = sin(0.15061 * x0 — 4.8503766) —
283.78384, (4.2)
(0.061204407 * x0)\*

Formulation of chemicals in effluent is as below, when TSSffinemt was
considered as output, first total influent was applied as varialfleation but the results
were not that promising, hence TSS amount in effluent in missimyspeas calculated
based on the TSS in inflent, and the equation which was searchedemmEsoftware is
as below equation ( 4.4), the chosen one has the least fithess, malstioorcoefficient,

least linear residual and least mean and absolute errors.

Y3= f(x1) = 41960101 + cos(2331550.3 + 34808167/ y(4.3)
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Y4=

F(x2) = 42334962 + cos (0.04909274 * x2 — 2.6754057) + ((344.07095 +

344.07095 * cos (0.090452246 * x2 — 3.7199678) — x2 x cos (0.090452246 x
x2 — 3.7199678))) / x2(4.4)

Genetic Algorithm approach was applied to interpolate the missing valu&Sin T
infl, CBOD-infl, TSS-efl and CBOD-efl. Population size for alltbem was 512 the rest

of the evaluation metrics to generate the final equation are shown in e dall figures

below successively for each output.

Table 4.10 Evaluation metrics of GA
approach for TSS in influent

Index Train Validation
Sample size 306 161

Fitness 0.85 0.85

R-squared 0.07 0

Correlation

coefficient 0.35 0.38

AIC 2525.45| 1351.57
MSE 3441.08 3079.35
MAE 49.47 46.43

Table 4.11 Evaluation metrics of GA
approach for CBOD in influent

Index Train Validation
Sample size 288 150

Fitness 0.86 0.89

R-squared 0.04 0.01

Correlation

coefficient 0.36 0.32

AIC 2384.71| 1272.28
MSE 3433.67 3696.73
MAE 44.61 46.7
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Table 4.12 Evaluation metrics of GA
approach for TSS in effluent

Index Train Validation
Sample size 306 161
Fitness 0.7¢ 0.68
R-squared 0.04 0.25
Correlation

coefficient 0.33 0.52
AIC 378.06 148.13
MSE 3.29 2.22
MAE 1.28 1.09

Table 4.13 Evaluation metrics of GA
approach for CBOD in effluent

Index Train Validation
Sample size 707 380
Fitness 0.91 0.92
R-squared -0.06 -0.08
Correlation
coefficient 0.21 0.18
AlIC -2946.17| -1565.85
MSE 0.01 0.01
MAE 0.1 0.1

The figures below consist of 4 parts (a) to (d), for all tlguies (4.10) to (4.13),
part (2) shows “Observed vs. predicted plot”. Part (b) shows “Restdtal histogram
plot”. Part (c) shows “Accuracy vs. complexity plot of the besttsmhs”. Part (d) shows

“The best solution error over the search time”.
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4.6.3.1 I nterpolated pointsin influent
In this section interpolated points and available values awalized in plots, red

dots show interpolated while blue line is for available data.
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Figure 4.14 Plot of times series of available values and interpolated
data for TSS in influent.
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Figure 4.15 Plot of times series of available values and interpolated
data for CBOD in influent.
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Figure 4.16 Plot of times series of available values and interpolated
data for TSS in effluent.
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Figure 4.17 Plot of times series of available values and interpolated
data for CBOD in effluent.

Two best networks are shown in Tables (4.10) and (4.11) and respectively f
configuration 1 (output was CBOD in effluent) and configuration 2 (outf@as TSS in

effluent); the results are based on the automated seastatistica
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Net. name| Test perf] ValidationTest error | Validation Hidden Output
perf. error activation | activation

MLP  3-

58-1 28.55 30.90 0.1767 0.8422 Exponentialentity

MLP 3-6-

1 32.65 32.61 0.1716 0.9922 Exponentillentity

Table 4.15 Best MLPs for configuration 2

Net. name| Test perf.| ValidationTest error | Validation Hidden Output
perf. error activation | activation

MLP  3-

68-1 36.90 19.37 2.4710 8.653 Logistic Identity

MLP  3-

67-1 32.91 18.62 2.544 8.649 Exponenti@ianh

4.7 Conclusion

Modeling a wastewater plant is difficult to accomplish due to Heylel of
complexity and nonlinearity of the plant and non-uniformity of the alshel data as well
as the nature of the biological treatment. An NN modeling approashimplemented to
solve the problem and discover the relation of input-output to be able dtptiee
behavior of the plant performance. It really involves a greategegf complexity and
uncertainty. When CBOD was defined as output the result was so p@arsbeaf lab
manipulation whereas using TSS as output yielded better resutis we&s so low when
using CBOD as output, the reason was that the mode and median vall&CfD was 4

mg/l and the algorithm could predict it very well since it was majority.
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NN modeling technigue has many advantages in modeling complexmsyste
simplicity, efficiency and generalization which was so usefunibdeling a wastewater
plant performance prediction model.

The other approach was to interpolate the missing values in CB@DI&S
based on historical data and total influent to the plant, which maiease frequency of
the data from 7 days to 1 day and more data points for the interval of 3 years.

In this section the results of the weekly data will be comptrdtie results of
daily interpolated data to find out which one is more promising andsylattter result.
Comparison of Network results for weekly data (data setl), daisg dith missing
values besides total influent (data set2) and filled daily data &#43) are compared for
two configurations mentioned before. The computational results arendéiated in

Tables (4.12) and (4.13).

Table 4.16 Compared networks for three defined datasets for TSS conceation

(&)
sl 2 | 8| gE|gc|22/85/25 8 28
a 15 6| 28 |E8|2c|85Sc| I S¢S
1 | TSS, CBOD TSSEOB_'; 2 19.96| 46.42| 5.66| 2.64 | Weekly | No-averaged
Tss, CBOD, RBF 3- .
2 tot inflent TSS 60-1 49.87| 53.29| 7.10| 7.42| Daily | Yes
Tss, CBOD, MLP . No-
3 tot inflent TSS 3-68-1 36.9 | 19.372.47) 8.65  Daily interpolated
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Table 4.17 Compared networks for three defined datasets for CBOD conceation

+— (@] Q
& 5 S| O 2 o
o El 5| g |Bc|Bg| & 83
= o 2 5
a 15 5 28 |28/ Sc| I S¢S
RBF  2-
1 TSS, CBOD CBOD 40-1 25.6 | 10 Weekly No-averaged
Tss, CBOD, tot RBF  3-
2 | inflent CBOD| 50-1 27.72 50.16| Daily Yes
Tss, CBOD, tot MLP 3-6- . No-
3 |inflent CBOD| 1 3265 32.61 Daily interpolated
4.8 Discussion

Nonlinear interpolation (curve fitting with noisy data) is not thagamngful
while we ignore some crucial questions about data set and makeassumptions like
data can be assumed to be continuous, smooth, possibly periodic, ssulifjast to
uncertainty.

It is suggested to model daily regular measurements for C&Q@DTSS without

laboratory filtering to be able to measure performance more accurately
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CHAPTER 5. CONCLUSION

This Thesis explores some practical applications of data mtecigniques and
heuristic search methods by using concepts in hydrology in fdeofi&Vastewater Plant
Process. Data sets considered for study included water quaéyneters, influent rate,
radar reflectivity, and tipping bucket. Statistical analysigarticular correlation-based
analysis, was used for the selection of input parameters fomtltkeling challenges
tackles throughout this work.

Chapter 1 provided background information and a literature review of past
applications of data mining in hydrology, as well as an introddio the multilayer
perceptron (MLP), decision tree (DT) which was extensively appheoughout this
Thesis.

The Second Chapter proved data mining and the DTs competence at making
prediction at a different spatial location. In this data driven modenfall at a
downstream location was predicted with reflectivity, velocity apdctrum width data
from other tipping bucket locations, as well as the rainfalh dedm all other tipping
buckets in surrounding area. Rainfall is a particularly diffietdter quantity parameter
to predict due to its erratic and fluctuating behavior and its teyd® zero value which
caused class imbalance problem and erroneous recording in rain.gdingeBT model
derived in this chapter makes a rainfall prediction at a gaug® W2G minutes with
accuracy of 94.21 %. The model’s robustness is analyzed asestésl toutside of its
training domain, at six other locations along the wastewater. plem results show that
the model is highly robust. The radius that model could maintaire wésted on other
rain gauges was 33.13 km with the accuracy above 95%.

Chapter 3 combines tipping bucket data and Next Generation Radao taiiid

a predictive model of the total influent rate to the wastewatet, by way of MLP and
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also DT. For classification model prediction could be done up to 1 howssiigity and
for regression model accuracy decrease to about 86 % up to 3 hours.

Chapter 4 considered multiple water quality parameters, and prowaded
methodology toward a very practical use of data mining; datailjag.f One method
for filling missing data was presented, called non-linear intetipola considered
complimentary water quality parameters, to predict carbonadaoakemical oxygen
demand and total suspended solids in influent rate. The other walky garameters in
effluent were measured concurrently with influent concentrationss miathod may be
useful at a location that missing values do not outnumber availablesvalie
methodology introduced utilizes time series data mining, or theoubéstorical data.
The method was used to model the current CBOD, TSS concentratiorikiemt, and
also to make a short term forecast. The behavior of the moaeaigzed when making
longer term forecast, as well. The steps in chapter 1 te duanmarized in Figure (5.1);
the flowchart demonstrates the main goal of this Thesis andssti@welation of each
forecast model to the other one.

Future research will focus primarily on using radar data in othedigiive
models. Upon research there appeared to be many other areasalysisaand model
improvement, like using reflectivity in solar energy predictive modeblargplant. Also,
the apparent usefulness of such high spatiotemporal resolution prempidaita to
hydrological models, namely, flood forecasting models, makes thiexeiting area of
research. Some other topics that will be studied in the futesefuther robustness
testing, such as testing the rainfall prediction models’ perforenamcother regions
farther away with different terrain properties, and the r#infaediction models’
dependency on nearby actual tipping buckets for accurate longertiorelidlso more
accurate method to fill the missing values of flow rate chemicals.

In Figure (5.1) whole process of this thesis is demonstrates in the flow chart
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